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Abstract1

Decoded Neurofeedback (DecNef) represents a pioneering approach in human neuroscience that en-2

ables modulation of brain activity patterns without subjective conscious awareness through the com-3

bination of real-time fMRI with multivariate pattern analysis. While this technique holds significant4

potential for clinical and cognitive applications, the causal mechanisms underlying successful DecNef5

regulation and the neural dynamics that distinguish successful learners from those who struggle remain6

poorly understood. To address this question, we conducted a meta-study across functional magnetic res-7

onance imaging (fMRI) data from five DecNef experiments, each with multiple fMRI sessions, to reveal8

causal network dynamics associated with individual differences in neurofeedback performance. Using9

the newly proposed CaLLTiF causal discovery method, we computed causal maps to identify causal10

network patterns that distinguish DecNef regulation from baseline and account for variations in neuro-11

feedback success. We found that enhanced connectivity within the bilateral control network–particularly12

stronger connections involving the posterior cingulate and precuneus cortex–predicted neurofeedback13

success across all five studies. Whole-brain causal connectivity during DecNef further exhibited distinct14

network reorganizations, characterized by reduced average path lengths and increased right-limbic nodal15

degrees. Further, comparisons across cognition- and perception-targeted DecNef revealed a remarkable16

separation in connections to and from the somatomotor network, where connections between somatomo-17

tor and control-default-attention networks are larger during cognitive neurofeedback while causal effects18

between somatomotor and subcortical-visual-limbic networks are larger during perceptive DecNef. This19

is despite the fact that none of the involved studies targeted or involved motor activity. Overall, our20

results demonstrated the key role of bilateral medial control network in successful DecNef regulation21

regardless of the DecNef targets, a clear separation in somatomotor involvement between cognitive and22

perceptive DecNef, and general promise of whole-brain causal discovery in understanding complex neural23

processes such as decoded neurofeedback.24

Keywords: fMRI, causal discovery, brain networks, statistical algorithms, cognitive neuroscience, de-25

coded neurofeedback26

Introduction27

Twenty years have passed since (Weiskopf et al., 2004)’s pioneering demonstration of the feasibility of us-28

ing real-time fMRI as a brain-computer interface, enabling participants to self-regulate brain activity via29

feedback. More recently, decoded neurofeedback (DecNef) has been proposed as a novel technique combin-30

ing implicit neurofeedback and multivariate pattern analysis (Shibata et al., 2011; Taschereau-Dumouchel31

et al., 2021). Unlike traditional methods that rely on overall signal amplitude and explicit strategies, DecNef32
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induces specific signal patterns in target brain regions, altering these neural patterns (and subsequently33

impacting behavior) without participants’ awareness of the exact content and purpose of the manipula-34

tion (Cortese et al., 2021; Shibata et al., 2019, 2011). As a result, DecNef can help reduce potential con-35

founding effects from cognitive processes or awareness of the specific dimension being manipulated. (Cortese36

et al., 2021). These characteristics have made DecNef especially well-suited for developing new clinical appli-37

cations, particularly in the treatment of neuropsychiatric disorders (Chiba et al., 2019; Koizumi et al., 2016;38

Taschereau-Dumouchel et al., 2018, 2020; Yamada et al., 2017). DecNef has also proved valuable beyond39

clinical applications, offering insights in systems and cognitive neuroscience to explore fundamental brain40

functions in diverse areas such as visual sensitivity (Shibata et al., 2011), color perception (Amano et al.,41

2016), fear memory (Koizumi et al., 2016; Taschereau-Dumouchel et al., 2018), facial preference (Shibata42

et al., 2016), and perceptual confidence (Cortese et al., 2016).43

The precise neural mechanisms underlying DecNef, however, are poorly understood. Recent research has44

started to delve into this question through a variety of methods, including meta-analyses, computational45

models, and neural network simulations (Emmert et al., 2016; Haugg et al., 2020; Oblak et al., 2017, 2019;46

Pereira et al., 2024; Sepulveda et al., 2016; Shibata et al., 2019; Skottnik et al., 2019). One plausible mech-47

anism that has been suggested is reinforcement learning. For example, Shibata and colleagues (Shibata48

et al., 2019) proposed the “targeted neural plasticity model,” suggesting that DecNef induces plasticity at49

the neuronal level in specific brain regions, leading to behavioral changes. Empirical evidence from previous50

studies supports this model. The findings by (Shibata et al., 2019) indicate that DecNef likely drives neural51

plasticity through reinforcement learning mechanisms, with significant activation in reward-related brain52

regions such as the ventral striatum and putamen in response to feedback signals. This suggests that DecNef53

engages the brain’s reward-processing circuits and may share neural foundations with conventional neuro-54

feedback and brain-machine interfaces. However, while these results highlight specific regional activations,55

they leave unexplored how broader brain connectivity and interactions contribute to the neural dynamics of56

the induction process. Our work addresses this gap by identifying causal interactions between brain regions57

during DecNef induction sessions compared to baseline. By examining these connectivity patterns, we aim58

to provide a connectivity-based understanding of neural dynamics and offer insights into the mechanisms59

that drive DecNef’s effects on brain function.60

Causal discovery provides an invaluable opportunity for uncovering brain mechanisms from purely obser-61

vational data, such as fMRI. fMRI possesses a major advantage for causal discovery because of its potential for62

whole-brain coverage, but it also poses significant challenges. fMRI’s low temporal resolution, combined with63

the computational complexity of analyzing large-scale networks, makes it difficult to accurately discern di-64

rectional relationships between brain regions. Traditional methods like Granger Causality (GC)(Barnett and65

Seth, 2014; Granger, 1969) and Dynamic Causal Modeling (DCM) (Friston et al., 2014) are common choices,66

but struggle to handle these complexities, especially in extensive fMRI networks. In our previous work,67

we developed CaLLTiF (Causal discovery for Large-scale Low-resolution Time-series with Feedback) (Arab68

et al., 2023) to address these challenges by utilizing both lagged and contemporaneous variables to identify69

causal connections. When applied to synthetic fMRI data, CaLLTiF outperformed state-of-the-art methods70

in both accuracy and scalability. Applied to resting-state human fMRI, CaLLTiF uncovered causal con-71

nectomes that are highly consistent across individuals, revealing a top-down causal flow from attention and72

default mode networks to sensorimotor regions, Euclidean distance-dependence in causal interactions, and a73

strong dominance of contemporaneous effects.74

Building on these insights, our current study applies CaLLTiF to DecNef induction sessions and compares75

them to baseline to explore how specific causal interactions shape neural dynamics during neurofeedback. We76

conducted a meta-study across five previously-published DecNef experiments, each involving multiple fMRI77

sessions per participant, to identify core causal mechanisms underlying DecNef across varied neurofeedback78

tasks. Using CaLLTiF, we derived causal graphs from fMRI data collected during both neurofeedback (NF)79

and decoder construction (DC) sessions (used to train the machine learning models which are then applied80

during real-time neurofeedback), uncovering brain interactions that either enhance or diminish neurofeedback81

performance. This meta-analysis integrates data from 45 participants across five distinct tasks, allowing us to82

isolate causal mechanisms that are fundamental to DecNef and not specific to any single task. Our findings83

reveal distinct patterns in causal dynamics, with mechanisms differing between tasks targeting cognitive84

functions and those focused on perceptual processes.85
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Results86

Causal discovery from decoded neurofeedback. Figure 1a illustrates the general framework of De-87

coded Neurofeedback (DecNef), comprising decoder construction (DC) sessions and neurofeedback (NF)88

sessions. In DC sessions, multivariate pattern analysis (MVPA) is used to train a decoder on brain activity89

patterns. In NF sessions, participants use the results of this decoder applied to current patterns of brain90

response to self-regulate specific brain regions based on real-time feedback. Figure 1a summarizes the gen-91

eral experimental design employed in the “DecNef collection” (Cortese et al., 2021), whose data we used92

for our analyses. Figure 1b presents the pipeline for the causality analysis conducted in this paper. Using93

our recently proposed algorithm, CaLLTiF (Arab et al., 2023), we derived causal brain connectomes from94

whole-brain fMRI data collected during both NF and DC sessions, with the latter used as a subject- and95

task-specific baseline for the former. Starting with fMRI data for each subject, we performed an automated96

parcellation that divided the brain into 100 cortical (Schaefer et al., 2018) and 16 subcortical (Yeo et al.,97

2011)) regions. We then applied CaLLTiF to the data from each session type to construct causal graphs, cap-98

turing directional relationships between parcels and revealing network dynamics specific to NF and baseline99

sessions.100

To enhance interpretability, we further combined parcels belonging to the same “functional networks” (Yeo101

et al., 2011) into 7 cortical (Schaefer et al., 2018) and 1 subcortical (Tian et al., 2020) subnetworks, each102

separated across the left and right hemispheres. This allowed us to generate subnetwork-level causal graphs,103

which we then statistically compared between NF and baseline sessions. This comparison enabled us to104

identify key differences in subnetwork connectivity patterns, shedding light on how neurofeedback impacts105

functional brain networks relative to baseline conditions.106

We found the maximum similarity within the NF graphs of the same subject. To quantify the consistency107

of causal graphs and assess the robustness of causal structures across different conditions, we computed a set108

of correlation measures comparing causal graphs across studies, subjects, sessions, and runs, as illustrated109

in Figure 1c. Our analysis revealed that NF graphs from the same subject within their own NF sessions110

exhibited the highest similarity scores, suggesting stable and individualized causal connectivity patterns111

during NF. This high within-subject similarity was followed by the similarity between NF graphs and baseline112

graphs from the same subjects. The partial similarity between NF and baseline sessions implies that, while113

individualized patterns persist, NF sessions introduce unique causal dynamics that set them apart from114

baseline sessions. Next in similarity were neurofeedback graphs across different subjects within the same115

study, suggesting that some shared causal features may be driven by study-specific protocols or task demands.116

The lowest similarity was observed between NF graphs from subjects across different studies, reflecting the117

influence of study-specific factors—such as targeted brain regions, neurofeedback paradigms, and participant118

characteristics—on the resulting causal network patterns. As shown in Figure 1c, these findings reveal a119

hierarchy in the consistency of causal connectivity, with the strongest patterns occurring within individual120

subjects’ NF sessions and the greatest variability seen across different studies. This hierarchical pattern121

underscores the personalized nature of neurofeedback’s impact on brain network organization while also122

highlighting the role of study design in shaping causal connectivity structures. Such insights are valuable123

for refining neurofeedback interventions by balancing individualized approaches with study-specific factors124

across experiments.125

Neurofeedback (NF) graphs show greater heterogeneity across subjects and sessions compared126

to baseline graphs. To quantify this variability, we calculated correlations between each pair of baseline127

graphs and each pair of NF graphs across all studies, subjects, sessions, and runs. As shown in Figure 1d, NF128

graphs exhibited significantly more variability, while baseline graphs were more consistent across subjects and129

sessions. This difference likely arises from the nature of the NF task, where subjects aim to modulate target130

brain activity to achieve higher scores, allowing flexibility in the brain dynamics they engage. In contrast,131

baseline sessions follow a relatively consistent task design across all studies, providing fewer opportunities132

for individual deviations. This distinction highlights the adaptive and personalized nature of neurofeedback,133

where each subject’s unique neural responses contribute to greater variability.134

During NF sessions, we observed increased engagement of control, limbic, and visual networks,135

along with diminished involvement of attention networks. We next examined the strengths of iden-136
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Figure 1: Overview of the decoded neurofeedback (DecNef) experimental pipeline and data preprocessing. (a)
During the Decoder Construction session (DC, used as baseline in the present study), participants view stimuli while their while
brain fMRI is recorded and used (offline) to construct decoders through multivariate pattern analysis (MVPA). In the Neuro-
feedback (NF) session, participants engage in self-regulation of brain activity, guided by real-time feedback based on decoders
trained on data from the DC session. (b) For each subject, fMRI data is parcellated into 100 cortical and 16 subcortical regions.
Preprocessing with fMRIPrep includes skull stripping, motion correction, spatial normalization, and smoothing, followed by
additional steps “consisting of” confound removal (model 3, 9P in (Ciric et al., 2017)) and linear detrending. CaLLTiF is then
applied to whole-brain fMRI data from both NF and baseline sessions to generate causal connectivity maps across multiple
studies, sessions and runs. These connectivity matrices are combined into subnetwork-level representations, organized into 7
cortical and 1 subcortical subnetworks. (c) Hierarchy of causal connectivity consistency across conditions. Strongest similarity
is observed within individual subjects’ NF sessions, while the greatest variability occurs across different studies. (d) NF graphs
exhibit greater variability across subjects and sessions compared to baseline. To quantify this, we calculated the Pearson cor-
relation as a measure of similarity between each pair of NF causal graphs and, separately, each pair of baseline causal graphs
across all studies, subjects, sessions, and runs. (e) Distribution of causal graph asymmetries computed for NF graphs, baseline
graphs, and the relative (NF-baseline) graphs.
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tified causal edges, as measured by the weighted subnetwork graphs using partial correlations (cf. Methods).137

Both NF and baseline graphs predominantly exhibited excitatory connections, as shown in Supplementary138

Figures 2a and 2b. For each pair of subnetworks (each edge in the subnetwork graph), statistical tests were139

conducted to compare the distribution of edge weights across all baseline and NF graphs from all studies.140

Since edge weights in each causal graph are derived from partial correlations, the sign of these correlations141

(positive or negative) can provide insights into whether connections are excitatory or inhibitory.142

In general we can have four edge types with varying effects in neurofeedback: excitatory edges becoming143

more or less excitatory (Figures 2a and 2c) and inhibitory edges becoming more or less inhibitory (Figures 2b144

and 2d). Figure 2e displays the set of edges that strengthen during NF sessions compared to baseline sessions145

(whether positive or negative), while Figure 2f illustrates the set of edges that weaken in NF sessions compared146

to baseline sessions (positive or negative). We observed heightened engagement of control, limbic, and visual147

networks, with reduced involvement of attention networks during NF sessions. However, these differences148

tend to “average out” when examining more summarized network measures, where few significant distinctions149

remain. Among the global metrics–graph density, shortest path length, assortativity, modularity, spectral150

radius, and synchronizability–only the average shortest path length showed a significant reduction in NF151

graphs (Figure 2i). No other global metrics exhibited significant differences between conditions. For nodal152

centralities, we found a significant difference in nodal degree only in the right limbic system, with NF graphs153

showing a higher degree compared to baseline (Figure 2g). Additionally, for causal flow, only the right154

ventral attention subnetwork revealed a significant difference, where NF graphs had a weaker sink strength155

than baseline graphs (Figure 2h).156

Key edges within bilateral control network linked to the posterior cingulate and precuneus cor-157

tex showed stronger connectivity in NF sessions and positively correlated with neurofeedback158

score. Next, we asked whether subject-specific causal graphs can be used to predict eash subject’s success159

in self-regulation, measured by their trial-by-trial DecNdef scores. To ensure comparability of scores across160

studies and eliminate study-specific biases, we applied a preprocessing pipeline (Figure 3a). This involved161

transforming scores with an inverse sigmoid function (the last layer of the logistic regression models used162

in score generation), z-scoring them across studies, averaging scores within each run, and further averaging163

over consecutive runs to associate each pair of runs with a single causal graph. We then conducted a cor-164

relation analysis at the level of causal edges within the subnetwork-level graphs. This detailed examination165

revealed many edges that were significantly correlated with the neurofeedback score. At the same time, we166

computed a differential graph to identify edges that were significantly stronger during NF sessions compared167

baseline. We then examined the intersection of two graphs, which gave rise to three sets of edges, as shown168

in Figure 3b. The first set includes edges that are stronger in NF sessions and positively correlate with the169

score (red), indicating these edges enhance the neurofeedback score. The second set comprises edges that170

are stronger in NF sessions but negatively correlate with the score (blue), suggesting these edges detract171

from the neurofeedback score. Lastly, the third set consists of edges that are stronger in NF sessions but172

do not have a significant impact on the neurofeedback score (gray, no significant correlation with the score).173

These findings highlight specific patterns of connectivity that may underlie the efficacy of neurofeedback174

training and provide a more nuanced understanding of the relationship between brain network dynamics and175

neurofeedback performance.176

As shown in Figure 3b (red edges), connections within the control network in each hemisphere are the177

only edges at the subnetwork level that are statistically stronger during NF and positively correlate with178

neurofeedback scores. Further parcel-level analysis revealed specific control network parcels driving this179

effect. Figure 3c shows a zoomed-in view of the bilateral control networks, where we can see that (1) there180

are no causal connections that were stronger in NF compared to baseline and negatively correlated with181

NF score (i.e., no blue edges), and (2) all the edges that are stronger in NF and positively correlate with182

score connect to bilateral posterior cingulate (PCC) and precuneus cortices. Our results thus suggest that183

bilateral PCC and precuneus function as a medial control hub in DecNef. The control network is widely184

recognized as a core system supporting high-level cognitive functions such as attention, task management,185

and goal-directed behavior (Cole et al., 2013; Seeley et al., 2007). It facilitates the integration of information186

across distributed brain regions, allowing for adaptive responses to dynamic task demands (Cole et al.,187

2013). Within this network, PCC and precuneus play essential roles in orienting attention, maintaining188

focus, and coordinating between self-referential and externally directed processes (Cavanna and Trimble,189
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Figure 2: Neurofeedback involves strengthening of control, limbic, and visual causal connectivity while weak-
ening causal connections involving attention networks. (a) Excitatory edges in baseline sessions that become more
excitatory in NF sessions. (b) Inhibitory edges in baseline sessions that become more inhibitory in NF sessions. (c) Excitatory
edges in baseline sessions that weaken in NF sessions. (d) Inhibitory edges in baseline sessions that weaken in NF sessions. (e)
Schematic topographic visualization of edges from (a) and (b). (f) Similar to (e) but for edges in (c) and (d). (g) Distribution
of nodal degrees across different subnetworks for NF and baseline sessions. (h) Similar to (g) but for nodal causal flows. (i)
Distribution of global network measures for NF and baseline causal graphs.
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2006; Leech and Sharp, 2014). The observed strengthening of connections in this medial control hub during190

neurofeedback suggests that these regions serve as integrative centers, facilitating adaptive, goal-oriented191

adjustments necessary for effective neurofeedback performance. This enhanced connectivity likely supports192

the ability to modulate brain states in response to feedback, positioning the PCC and precuneus as critical193

components that link cognitive flexibility with targeted brain dynamics during neurofeedback.194

As seen in Figure 3c, there is noticeable hemispheric asymmetry in the existing nodes and connections195

within the control network. To ensure that this asymmetry is not due to how the parcels within high-level196

association cortices are assigned across different brain networks, particularly between control and default197

mode networks (DMN), we also examined the edges that are stronger in NF and positively correlate with the198

score within the DMN. Interestingly, only one additional edge appeared (Supplementary Figure 4), indicat-199

ing that the hemispheric asymmetry observed within the control network is likely an intrinsic characteristic200

rather than an artifact of network parcellation. Although some parcels in the right control network have201

corresponding counterparts in the left DMN (e.g., several prefrontal cortex parcels), Supplementary Figure 4202

shows that the edges strengthened in NF and positively correlated with the score are primarily confined to203

the control network, and predominantly within the right control network. Similar to earlier comparisons, we204

observed no significant correlations between average neurofeedback scores and the global measures of causal205

graphs, including graph density, shortest path length, assortativity, modularity, spectral radius, and synchro-206

nizability (Supplementary Figure 3a). Similarly, analyses of nodal centralities, including nodal degree and207

causal flows for each node, showed no significant associations with neurofeedback scores (see Supplementary208

Figures 3b,3c).209

Somatomotor causal connectivity distinctly separates perceptive from cognitive neurofeed-210

back. In the five studies we analyzed, two studies (Study 2 and Study 3 in the DecNef dataset) targeted211

early visual areas for neurofeedback, whereas the other three studies (Studies 1, 4, and 5 in the DecNef212

dataset) targeted higher-level brain regions—namely, the cingulate cortex, inferior parietal cortex, dorsolat-213

eral prefrontal cortex, and ventral temporal areas. We categorized these studies into two sets. Studies 2 and214

3 were designated as “perception experiments,” regulating lower-level cortices, while Studies 1, 4, and 5 were215

designated as “cognition experiments,” regulating higher-level areas. We then tested whether significant216

differences in the causal graphs between these two sets of neurofeedback experiments are observable. As217

with previous analyses, we did not find major differences at the level of global network measures (See Sup-218

plementary Figure 5a), or nodal centralities (See Supplementary Figures 5b, 5c). At the edge level, however,219

distinct patterns emerged between perceptive and cognitive NF sessions (Figure 4a). Connections involving220

the somatomotor network reveal a distinct pattern: those that strengthen during cognitive NF distinctly221

link the somatomotor network the control, defaul mode, and attention networks (hierarchically higher-order222

networks), whereas those that intensify during perceptive NF distinctly connect the somatomotor network223

to subcortical, visual, and limbic networks (Figure 4b). Notably, this strong division appears even though224

motor regions were not directly targeted in any of the studies. A similar but subtler pattern is observed225

in the dorsal attention network’s connectivity ((Figure 4c), while a reversed pattern occurs in subcortical226

connections (Figure 4d). Finally, connections among other networks, namely, the ventral attention, limbic,227

visual, control, and default mode networks, are predominantly stronger during cognitive NF (Figure 4e).228

7



(a)

Sub Sub

Vis Vis

Lim Lim

Cont Cont

DMN DMN

Vent
 Att

Vent
 Att

Dors
 Att

Dors
 Att

Som
 Mot

Som
 Mot

L R

(b)

Par

PFCl

pCun

Cing

Par_1

Par_2

PFCl_1

PFCl_2PFCl_3

PFCl_4
Cing

PFCmp

pCun

L R

NF Medial Hub

(c)

Figure 3: The medial control hub in decoded neurofeedback. We found that edges within bilateral control network
linked specifically to the posterior cingulate cortex (PCC) and precuneus show stronger connectivity in NF sessions and positively
correlated with neurofeedback score. (a) Score preprocessing steps to ensure comparability and minimize biases. We first
applied an inverse sigmoid function to transform scores back to their original range. We then z-scored the scores for cross-study
standardization, followed by averaging within each run, and then across two consecutive runs to yield a single representative
score for each causal graph. (b) Edges that are significantly stronger in NF sessions compared to baseline and correlate with
NF score positively (red), negatively (blue), or insignificantly (gray). (c) Zoomed-in view of the control network. Edge colors
have the same meaning as in (b). All red edges connect to either PCC or precuneus, hence highlighting them as a medial
control hub for DecNef. Also remarkably, we did not find any edges within the control network that are significantly stronger
during NF but correlate negatively with NF score.
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(a) (b) Somatomotor Subnetwork

(c) Dorsal-Attention Subnetwork (d) Subcortical Subnetwork (e) Other Subnetworks

Figure 4: Somatomotor causal connectivity distinctly separates perceptive from cognitive neurofeedback. (a)
Heatmap illustrating the significant differences in edge strength between cognitive neurofeedback (Studies 1, 4, 5, targeting
higher brain functions) and perceptive neurofeedback (studies 2, 3, targeting lower brain functions). Red-colored edges indicate
stronger connectivity in cognitive neurofeedback, while blue-colored edges represent stronger connectivity in perceptive neu-
rofeedback. (b) Schematic diagram of only the subset of edges in (a) that connect to the bilateral somatomotor subnetwork.
Edges linking the somatomotor network to higher brain areas, such as the control, default mode, and attention networks, exhibit
greater strength during cognitive neurofeedback. In contrast, edges connecting the somatomotor network to the (hierarchically-
lower) subcortical, visual, and limbic networks show stronger connectivity during perceptive neurofeedback. (c) Similar to
(b) but for the subset of edges connecting to the dorsal attention subnetworks. A similar but less prominent pattern to (b)
is observed. (d) Similar to (b) but for the subset of edges connecting to the subcortical subnetwork. Here we observe an
approximately opposite pattern to that observed in (b). (e) Remaining connections in (a) other than those shown in (b-d).
These consist of connections between the ventral attention, limbic, visual, control, and default mode networks and are largely
stronger during cognitive neurofeedback.
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Discussion229

Comparison between NF and baseline sessions A comparative analysis between NF and baseline ses-230

sions highlights the unique neural dynamics fostered by NF. NF sessions showed significantly more variability231

in causal connectivity across subjects and sessions. This variability is likely due to the open-ended nature of232

NF training, where subjects are given real-time feedback to modify brain activity to achieve a target state233

without explicit task constraints. Consequently, subjects in NF sessions are free to explore various neural234

strategies to reach the desired brain state, leading to a wider range of causal network configurations. In con-235

trast, baseline sessions are structured and task-oriented, requiring participants to complete specific cognitive236

or perceptual tasks designed to generate a consistent neural response across sessions and subjects. This237

structure inherently constrains the degree to which brain dynamics can vary, resulting in greater similarity238

in connectivity patterns across individuals. This finding can suggest that NF facilitates individualized brain239

dynamics exploration more, compared to more standardized neural response imposed during baseline. These240

differences underscore the adaptive nature of NF as an individualized training protocol and suggest that241

decoder construction sessions could serve as a baseline for understanding how neurofeedback reshapes brain242

networks. Furthermore, the higher correlation within NF causal graphs for the same subject—compared to243

NF graphs across subjects—suggests that while NF encourages flexible neural exploration, there are still244

stable, individualized patterns that characterize each participant’s response to NF.245

Based on our analysis, we observed significant differences in causal connectivity patterns between NF and246

baseline sessions, particularly at the level of individual edges. Both NF and baseline graphs were dominated247

by excitatory connections, yet the NF graphs exhibited unique alterations in connectivity strength. The248

global and nodal measure comparisons between NF and baseline graphs reveal that only a few metrics differ249

significantly, highlighting the selective nature of network reorganization during NF. Specifically, while NF250

graphs displayed a smaller average path length, suggesting more direct or efficient communication path-251

ways, other global metrics—including graph density, assortativity, and modularity—did not show notable252

differences. This can indicate that the reconfiguration of brain networks during NF is targeted rather than253

widespread, adapting selectively to the demands of feedback-based learning. For nodal centralities, distinct254

differences emerged within the right limbic and ventral attention subnetworks. NF graphs demonstrated255

higher nodal degrees in the right limbic network, implying increased connectivity in areas associated with256

emotional engagement and motivational drive—key factors for maintaining focus and effort during neurofeed-257

back. Additionally, NF graphs showed a decrease in causal flow within the right ventral attention network258

compared to baseline, potentially indicating a shift from external attention processing to more internally259

directed cognitive strategies. This shift likely supports the NF task’s emphasis on internal modulation of260

brain states in response to feedback, aligning with the task’s feedback-driven nature and reducing reliance261

on external attentional mechanisms.262

The edge-level analysis comparing causal graphs between NF and baseline sessions highlights a clear263

reconfiguration of network engagement. Specifically, there is a stronger involvement of the control, limbic,264

and visual networks, paired with a reduced involvement of attention networks across interactions with every265

other subnetwork. This increased connectivity within and between the control, limbic, and visual networks266

during NF sessions likely reflects the core demands of NF, where participants strive to modulate their brain267

states to align with feedback targets. Enhanced connections between the control network and other networks268

may indicate an increased need for self-regulation and executive control, crucial for directing and sustaining269

focus on the internal goal of modulating neural activity. Similarly, the heightened involvement of the limbic270

network, with interactions across other subnetworks, suggests that emotional and motivational processes are271

integral to the NF task. The limbic network, often associated with engagement, reward, and motivation, may272

provide the motivational drive necessary for participants to stay engaged with the NF feedback, especially273

when attempting to achieve target states over prolonged sessions.274

The visual network’s increased connectivity with other subnetworks aligns with the feedback’s visual275

nature, where visual processing is essential for participants to interpret the cues on screen. This added276

involvement of the visual network reinforces the role of visual feedback in guiding participants as they work277

toward their targets. In contrast, the reduced connectivity of attention networks across all interactions with278

other subnetworks suggests a shift from external attention toward internally focused regulation. During279

NF, participants may be less reliant on attentional processing as typically required in response-driven tasks,280

favoring an internally driven strategy. This reduction in attention network involvement may facilitate more281
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flexible approaches, allowing participants to explore different internal strategies rather than relying heavily282

on external, reactive attention. Overall, these patterns point to a distinct network reconfiguration in NF,283

prioritizing internal regulation and motivational support through stronger control, limbic, and visual network284

interactions, while decreasing reliance on externally oriented attention systems. This reorganization may285

represent a critical neural adaptation that enables effective neurofeedback learning.286

Variability in neurofeedback performance and neural dynamics One of the notable observations287

in this study is the high degree of variability in NF performance across participants, reflected in the range of288

causal connectivity patterns identified in NF sessions. This variability likely arises from individual differences289

in the capacity to modify brain activity patterns in response to NF feedback. Some participants may be290

better equipped to recruit the bilateral control network, thereby achieving greater modulation of the target291

brain areas and higher NF scores. Conversely, others may rely on alternative neural strategies or fail to292

establish effective connectivity within the necessary networks, leading to lower NF performance.293

The flexibility inherent in NF tasks, which do not impose strict constraints on the neural pathways that294

participants can engage, further allows for this variability. In NF sessions, participants are incentivized to295

achieve a higher score by matching their brain activity to a pre-specified pattern, but the strategies and296

networks they recruit are not explicitly dictated. This freedom results in diverse causal configurations, as297

individuals explore different neural pathways to meet the feedback criteria. In contrast, the baseline sessions298

likely yield more consistent causal structures, as they are designed around task-driven demands that are299

uniformly applied across participants. The findings indicate that this variability in NF might be a crucial300

factor contributing to individual differences in NF effectiveness. For clinical and research applications,301

understanding these individualized causal dynamics could help optimize NF training protocols by tailoring302

the feedback and task requirements to each participant’s unique neural response pattern. The distinct303

connectivity patterns in high-performing versus low-performing participants suggest that monitoring these304

dynamics could serve as a biomarker for successful NF learning, potentially guiding personalized interventions305

that maximize NF’s efficacy.306

Assumptions and limitations. One limitation of this study arises from the constraints of the CaLLTiF307

method, particularly given the slower temporal resolution of the fMRI data (TR = 2s). With such a TR,308

many causal interactions are detected as contemporaneous rather than lagged, which can result in increased309

symmetry and reduced causal flow information in the resulting graphs. To address this, we modified CaLLTiF310

to yield more asymmetric graphs that better capture directional causality. However, this adjustment may311

increase the probability of Type I error. Nevertheless, we believe this trade-off is moderated by CaLLTiF’s312

inherently conservative nature, which includes multiple comparison correction steps to control for false313

positives. As such, we are optimistic that the modified CaLLTiF provides accurate directional insights314

without substantially inflating Type I error rates. Another limitation concerns the meta-analysis across315

studies and subjects. Each DecNef study involved different participants, resulting in limited graph samples316

per subject. This constraint precluded robust per-subject analyses in some cases, as we lacked sufficient317

samples to explore individual-level causal dynamics comprehensively. While our combined dataset offers318

valuable insights at the group level, it limits our ability to make strong individual-specific conclusions.319

Additionally, due to the lack of resting-state fMRI data for each subject, we used data from each subject’s320

DC sessions as a baseline for comparison. This approach allowed us to assess deviations of the NF graphs from321

the DC graphs, which effectively highlighted changes induced during NF sessions. Although this baseline322

choice added useful asymmetry and enhanced certain aspects of the analysis by making NF graphs more323

asymmetric, it may not provide the optimal baseline for detecting causal dynamics in NF sessions. A true324

resting-state baseline could offer a more neutral benchmark for assessing changes specific to NF interventions.325

Summary. This study provides a detailed meta-analysis of whole-brain causal connectivity during decoded326

neurofeedback, applying CaLLTiF as a state-of-the-art causal discovery method across data from five stud-327

ies. By constructing causal graphs for both NF and baseline sessions, we uncovered distinct causal network328

characteristics in NF sessions that correlate with successful neurofeedback. In particular, enhanced connec-329

tivity within the bilateral control network, particularly those involving the posterior cingulate and precuneus330

cortex, emerged as a key factor linked to improved neurofeedback scores. Furthermore, NF sessions displayed331
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unique network reorganization patterns, such as reduced path lengths and increased right-limbic connectiv-332

ity, setting them apart from the more structured baseline sessions. Additionally, somatomotor connectivity333

patterns were found to vary between cognitive-focused and perception-focused DecNef tasks, highlighting334

task-specific neural modulation. Together, these findings contribute to a deeper understanding of the neural335

dynamics in DecNef, with implications for refining its application in both clinical and cognitive neuroscience.336

Material and Methods337

Causal Discovery Algorithm (CaLLTiF)338

In this work we used our recently developed causal discovery algorithm CaLLTiF (Arab et al., 2023) to339

extract causal connectivity graphs from fMRI data collected during NF and baseline sessions. Compared to340

the original algorithm in (Arab et al., 2023) here we slightly modified CaLLTiF to improve its effectiveness341

with even slower sampling of the fMRI data in this study (TR = 2s compared to TR = 0.72s in our earlier342

work). In CaLLTiF, a causal link is established from a node (parcel) Xi to node Xj with a lag of τ ≥ 0343

samples if Xi(t − τ) is significantly correlated with Xj(t) after conditioning on all other nodes and their344

lagged values, ensuring that correlation is not due to a common cause or mediation through other nodes. If345

τ = 0, a bidirectional feedback connection is placed between Xi and Xj , unless at least one variable also346

causes the other with τ > 0, in which case the direction of causality is determined based on the lagged347

effect(s). However, as noted in (Arab et al., 2023), lagged effects become exponentially harder to detect with348

increasing TR and finite samples, despite the presence of a statistically significant contemporaneous effect349

(τ = 0), which is proof that a lagged effect must exist. To address this challenge, we adjusted CaLLTiF to350

handle the (even) slower sampling in this work. Specifically, for pairs of nodes with a statistically significant351

contemporaneous effect (detected at the originally suggested strict level α = 0.0025), we relaxed the threshold352

of statistical significance on their lagged effects from α = 0.0025 to α = 0.05. Specifically, for pairs of nodes353

where only a statistically significant contemporaneous effect was detected (at the originally strict threshold354

of α = 0.0025 ), we relaxed the significance level for detecting lagged effects from α = 0.0025 to α = 0.05.355

In CaLLTiF, a contemporaneous edge between two variables is typically considered bidirectional based on356

prior assumptions. By increasing the significance threshold for lagged edges, we aimed to uncover potential357

weaker lagged connections that may have been missed under the stricter α level. This adjustment allowed358

us to identify additional directional influences that would increase the asymmetry of the final causal graphs359

Our analysis revealed that elevating the threshold parameter significantly enhances the asymmetry within360

the resulting causal graphs. This is achieved by detecting orientations from lagged edges that were initially361

weaker. This effect is depicted in Supplementary Figure 1, where it is evident that the peak asymmetry is362

observed at α = 0.5. Despite this, we opted to limit our threshold to α = 0.05 to ensure that the identified363

causal edges retained statistical significance. Asymmetry measures were computed across all causal graphs364

generated from both the baseline sessions and NF sessions within the scope of our studies. Another source365

of asymmetry in our graphs arises from our methodology, which treats the decoder graphs as the baseline.366

Figure 1e illustrates how this source of asymmetry contributes to the graphs’ asymmetry in comparison to367

the original NF graphs we analyzed.368

We investigated whole-brain causal connections using data from five DecNef studies (Cortese et al.,369

2021) through the CaLLTiF (Causal Discovery for Large-scale Low-Resolution Time-Series with Feedback)370

algorithm (Arab et al., 2023). For each participant, the data consists of a session used in the main experiment371

to train the machine learning decoder and several closed-loop fMRI neural reinforcement sessions. We372

computed one causal graph for each session, encompassing both baseline and NF sessions. Data were373

truncated to ensure the same sample size was used to compute each causal graph, and CaLLTiF was adapted374

to handle slower fMRI data. In total, we have 135 causal graphs for three NF sessions, each involving 9375

subjects across 5 studies. For each session, one causal graph was computed. Additionally, for baseline session,376

we have 45 graphs encompassing all studies and subjects.377

Data378

Overview of DecNef experimental studies and targeted neural domains. The fMRI data used for379

causal connectivity analysis in this study were sourced from five distinct DecNef experiments, each examining380
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neural mechanisms in specific cognitive and perceptual domains (Cortese et al., 2021). For each participant,381

data includes a session for training the machine learning decoder and several (3 to 10) closed-loop fMRI382

neural reinforcement sessions.Study 1 explored facial preference representation in the cingulate cortex (CC),383

showing that activation patterns within this region could be manipulated to alter preferences for initially384

neutral faces (Aharon et al., 2001; Chatterjee et al., 2009; Iaria et al., 2008; Said et al., 2011; Shibata et al.,385

2016). Study 2 investigated associative learning between orientation and color in early visual areas, demon-386

strating that DecNef could induce long-term changes in color perception by linking specific visual features387

such as orientation and color in early visual areas (Amano et al., 2016). Study 3 examined fear reduction388

through counter-conditioning in the visual cortex, leveraging DecNef to attenuate conditioned fear responses389

without explicit awareness (Koizumi et al., 2016). Study 4 focused on the dissociation between subjective390

confidence and perceptual accuracy, using DecNef to manipulate confidence without affecting actual perfor-391

mance, challenging the prevailing view that confidence directly reflects perceptual reliability (Cortese et al.,392

2016; Fleming et al., 2012; Kepecs and Mainen, 2012; Koizumi et al., 2015; Meyniel et al., 2015; Rounis et al.,393

2010; Simons et al., 2010; Wilimzig et al., 2008). Finally, Study 5 investigated the unconscious reprogramming394

of innate fear responses to spiders and snakes using hyperalignment-based neurofeedback, demonstrating a395

reduction in physiological fear indicators without conscious exposure to feared stimuli (Guntupalli et al.,396

2016; Haxby et al., 2011; Taschereau-Dumouchel et al., 2018). Collectively, these studies provide a rich397

dataset for examining causal brain dynamics across varied neural and behavioral domains, enhancing our398

understanding of individualized neurofeedback responses.399

Unlike univariate approaches which measure overall activity levels within a region-of-interest (ROI) by400

treating each voxel independently, multivoxel pattern analysis (MVPA) using in DecNef (Kamitani and401

Tong, 2005; Norman et al., 2006) decodes information distributed across patterns of neural activity and402

can therefore result in higher target specificity. Recent advancements in DecNef include a method called403

hyperalignment (Haxby et al., 2011; Taschereau-Dumouchel et al., 2021), which allows the experimenter to404

infer the target neural representation indirectly from surrogate participants. Hyperalignment constructs a405

common, high-dimensional space from patterns of neural activity across participants using a series of linear406

transformations. These transformations align any new data patterns with the individual’s brain coordinates407

and the model space coordinates. During the decoder construction session, participants performed tasks408

tailored to the study’s focus, including a simple visual task (Studies 2 and 3), a preference task (Study 1), a409

perceptual task (Study 4), or a memory task (Study 5). In the NF sessions, participants consistently followed410

a similar procedure. They were instructed to adjust their brain activity to enlarge a feedback disc displayed411

on the screen at the end of each trial. The disc’s size indicated the reward amount for that trial, contributing412

to a cumulative reward. Participants were told that the task’s goal was to maximize their reward. However,413

they were unaware that the disc size—and thus the reward—was determined by how closely their current414

brain state matched a target state. The pre-trained decoder was used in real-time to evaluate this match.415

See (Cortese et al., 2021) for further details on DecNef and the present meta-dataset.416

Decoded neurofeedback fMRI data collection. The fMRI data was acquired using Siemens MAG-417

NETOM Verio and Prisma 3 Tesla MRI scanners. The scanning parameters included a repetition time (TR)418

of 2000 ms and a voxel size of 3 Ö 3 Ö 3.5 mm³ (See more details at (Cortese et al., 2021)). All partici-419

pants across the five studies included in the analysis provided written informed consent. The recruitment420

procedures and experimental protocols were approved by the institutional review board at the Advanced421

Telecommunications Research Institute International (ATR, Kyoto, Japan), under the following approval422

numbers: 14–121, 12–120, 15–181, 14–140, and 16–181. The studies were conducted in accordance with the423

principles outlined in the Declaration of Helsinki.424

fMRI data preprocessing. We initially preprocessed the fMRI data using standard steps implemented425

in fMRIPrep (Esteban et al., 2019). Subsequently, we eliminated 9 confounding factors from the time-series426

data of each voxel. We used Model 3. (9P) in (Ciric et al., 2017) which combines the 6 motion estimates, 2427

physiological time series (mean White Matter and mean CSF signals), and the global signal. This model has428

been widely applied to functional connectivity studies (Ciric et al., 2017). For all subjects, we parcellated429

the brain into 100 cortical regions (Schaefer 100x7 atlas (Schaefer et al., 2018)) and 16 subcortical ones430

(Melbourne Scale I atlas (Tian et al., 2020)).431
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Computing Functional Graphs432

To calculate the functional graphs for each subject, we consolidated the data from the four sessions of each433

subject in the HCP and computed the pairwise correlations among all pairs of parcels. To form a binary434

functional graph, we placed an edge between any two parcels displaying a statistically significant correlation435

coefficient (p < 0.01, t-test for Pearson correlation coefficient).436

Computing Subnetwork Graphs from Parcel-Level Graphs437

Subnetwork graphs were computed by aggregating parcel-level binary graphs into graphs between 16 sub-438

networks. These subnetworks consist of the standard 7 resting-state subnetworks (Yeo et al., 2011) plus439

one subcortical subnetwork, separately for the left and right hemispheres. A subnetwork-level graph is then440

computed for each subject, whereby the weight of an edge from subnetwork i to j is the number of nodes in441

subnetwork i that connect to nodes in subnetwork j, normalized by the number of all possible edges between442

these subnetworks.443

Computing Degree and Causal Flow444

To determine the degree and causal flow of a node i in a binary directed graph, its in-degree (number of445

edges pointing toward node i) and out-degree (number of edges originating from node i) are first computed446

and normalized by the total number of nodes in the graph. The degree of node i is then computed as the447

sum of the out-degree and in-degree, while the causal flow is obtained by subtracting the in-degree from the448

out-degree. The same process is followed for weighted graphs except that the calculation of in-degree and449

out-degree involves a weighted mean. Mathematically,450

Causal F low (i) =
1

N

N∑
j=1

G(i, j)− 1

N

N∑
j=1

G(j, i) , i = 1, 2, ..., N

Degree (i) =
1

N

N∑
j=1

G(i, j) +
1

N

N∑
j=1

G(j, i) , i = 1, 2, ..., N

where G denotes the graph’s (binary or weighted) adjacency matrix.451

Computing Global Network Measures452

Density. This provides an overall measure of connectivity or density within the graph. While this measure453

in its definition cannot distinguish between a few edges with very large weights and many edges with smaller454

weights in the subnetwork graphs, since the weight of each edge in subnetwork graph reflects the number455

of parcels connecting the subnetworks, this density measure serves as a useful representation of the graph’s456

general connectivity.457

Shortest Path Length (PL). It is a measure of how efficiently information can travel across a network.458

It is computed by calculating the shortest path between all pairs of nodes, where the shortest path is defined459

as the minimum sum of edge weights connecting the nodes. We calculated this measure for each subnetwork460

graph using the NetworkX Python package (Hagberg et al., 2008), which efficiently computes the shortest461

paths for weighted graphs and averages them to produce a global measure of connectivity. It represents how462

well-connected the brain is. A lower average shortest path length indicates more efficient communication463

across the whole brain, meaning information can travel more quickly between nodes (subnetworks) (Milgram,464

1967; Rubinov and Sporns, 2010). Conversely, a higher average shortest path length suggests less efficient465

connectivity, where information requires more steps to traverse between nodes (subnetworks).466

Assortativity. It is a measure of the tendency of nodes in a network to connect to other nodes that467

are similar to themselves in some attribute, such as node degree or edge weight. In weighted networks,468

assortativity quantifies the correlation between the weights of edges connecting nodes. Positive assortativity469
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indicates that nodes are more likely to connect to others with similar attributes (e.g., similar node degrees or470

edge weights), while negative assortativity suggests that nodes with dissimilar attributes are more likely to471

be connected (Newman, 2002, 2003). We computed the degree assortativity coefficient for each subnetwork472

graph using a function from the NetworkX Python package (Hagberg et al., 2008). This function calculates473

the correlation between the degrees of connected nodes, specifically measuring degree assortativity. For474

weighted networks, we used the weight=’weight’ parameter, which ensures that the edge weights are taken475

into account when calculating the degree of each node. When applied to a weighted graph, the degree of476

a node is defined by the sum of the weights of the edges connected to it (i.e., the weighted degree). The477

assortativity coefficient then measures the correlation between the weighted degrees of pairs of connected478

nodes. This allows us to assess whether nodes with higher edge weights are more likely to be connected to479

other nodes with similarly high edge weights, providing insights into the subnetwork’s structure. A positive480

assortativity coefficient suggests that nodes with higher weighted degrees tend to connect to each other, while481

a negative coefficient suggests that nodes with dissimilar weighted degrees are more likely to be connected.482

Modularity. It is a measure of the strength of division of a network into communities, quantifying the483

difference between the observed density of edges within communities and the expected density in a random484

graph. A higher modularity value indicates a stronger community structure, where nodes within a commu-485

nity are more densely connected to each other than to nodes outside the community (Newman, 2006).. To486

compute the modularity for each subnetwork graph, we first converted the graph into an undirected format,487

as modularity optimization requires an undirected graph. After transforming the graph, we used the greedy488

modularity optimization algorithm to detect communities. This algorithm partitions the network into com-489

munities by maximizing the modularity score, which reflects the quality of the community structure. Finally,490

we calculated the modularity value for each subnetwork graph, which measures how well the nodes within491

each detected community are connected compared to what would be expected in a random graph with the492

same degree distribution. The resulting modularity score gives us an indication of the network’s community493

structure. A higher modularity value suggests that the subnetwork has a more significant division into com-494

munities with dense intra-community connections and fewer connections between communities (Newman,495

2006).496

Spectral Radius. It is a global measure of network structure related to the spread of activity across the497

network. It is computed as the largest eigenvalue of the connectivity and represents the critical coupling498

strength required for synchronization. As the primary eigenvalue, the spectral radius provides insights into499

the structural properties, dynamical behavior, and stability of the underlying network. In network-based500

models of brain dynamics, the spectral radius has been linked to how easily the system can shift into an501

excited state. To compute the spectral radius for each subnetwork graph, we first calculated the eigenvalues502

of the weighted adjacency matrix. The spectral radius was determined by identifying the largest absolute503

eigenvalue from these eigenvalues. A higher spectral radius suggests a stronger, more dominant network504

structure, with greater potential for synchronization and transitions into excited state (Meghanathan, 2014;505

van Dam and Kooij, 2007; Wang et al., 2015, 2003).506

Synchronizability. It is a measure of how easily a network can synchronize its components, reflecting the507

stability and collective behavior of the network when nodes attempt to synchronize (Arenas et al., 2008).508

To compute synchronizability for each subnetwork graph, we first calculated the Laplacian matrix of the509

directed graph, which was computed using the NetworkX Python package (Hagberg et al., 2008). This510

matrix captures the network’s structural properties and the relationships between nodes. After computing511

the Laplacian matrix, we calculated its eigenvalues and sorted them in ascending order. Synchronizability is512

then assessed as the ratio of the second smallest eigenvalue to the largest eigenvalue of the Laplacian matrix.513

A higher value of this ratio indicates that the network is more easily synchronized, with less resistance to514

synchronization, as reflected by a low second smallest eigenvalue (Tang et al., 2014). We computed this ratio515

for each subnetwork graph, which provides insight into the network’s ability to reach a synchronized state.516

15



Computing Correlations Between Neurofeedback Scores and Causal Connec-517

tomes518

We represented the strength of each parcel-level edge using the partial correlation values from CaLLTiF’s519

causal graphs. The partial correlation value for each edge in the parcel-level causal summary graph (computed520

by temporal aggregation) was calculated as the partial correlation at the lag with the maximum absolute521

value, preserving its sign. We then condensed the original parcel-level graphs (116 × 116 matrix) into522

subnetwork-level graphs (16×16 matrix) by calculating a normalized edge weight for each pair of subnetworks.523

Specifically, for each pair of subnetworks, we summed the weights of all edges connecting parcels between524

the two subnetworks in the parcel-level partial correlation graph. To account for differences in parcel counts525

between subnetworks, we normalized this sum by dividing it by the total number of possible edges connecting526

those subnetworks. This normalization provided a consistent measure of connectivity strength between527

subnetworks, regardless of their size. Across all graphs from various studies, subjects, sessions, and runs, we528

compiled sequences of these edge strengths. For neurofeedback scores, we calculated an average by taking the529

mean of feedback samples reported during neurofeedback sessions for each subject. Since each causal graph530

was derived from fMRI data spanning two runs, we averaged feedback scores from these runs to align them531

with each causal graph. Finally, we computed Spearman correlations between edge strengths and average532

neurofeedback scores for each possible edge in the subnetwork graph. After applying FDR correction for533

multiple comparisons across all the edges, we retained the edges that showed significant correlations with534

neurofeedback scores for further analysis.535

Computing536

All the computations reported in this study were performed on a Lenovo P620 workstation with AMD 3970X537

32-Core processor, Nvidia GeForce RTX 2080 GPU, and 512GB of RAM.538
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