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Abstract 

A fundamental topological principle is that the container always shapes the content. In 

neuroscience, this translates into how the brain anatomy shapes brain dynamics. From 

neuroanatomy, the topology of the mammalian brain can be approximated by local 

connectivity, accurately described by an exponential distance rule (EDR). The compact, folded 

geometry of the cortex is shaped by this local connectivity and the geometric harmonic modes 

can reconstruct much of the functional dynamics. However, this ignores the fundamental role 

of the rare long-range cortical connections, crucial for improving information processing in the 

mammalian brain, but not captured by local cortical folding and geometry. Here we show the 

superiority of harmonics mode combining rare long-range with EDR (EDR+LR) in capturing 

functional dynamics (specifically long-range functional connectivity and task-evoked brain 

activity) compared to geometry and EDR representations. Importantly, the orchestration of 

dynamics is carried out by a more efficient manifold made up of a low number of fundamental 

EDR+LR modes. Our results show the importance of long-range connectivity for capturing the 

complexity of functional brain activity through a low-dimensional manifold shaped by 

fundamental EDR+LR modes. 

 

Introduction   

How brain underlying anatomy shapes functional dynamics is an unresolved question being 

studied from the perspective of network neuroscience1, brain modelling7, graph signal theory8 

and neural field theories with different assumptions on the underlying anatomy3,9. Therefore, 
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the choice of underlying anatomical features is of paramount importance in deriving the most 

simple and parsimonious description of the emerging spatiotemporal brain dynamics.  

In previous work on retrograde tract tracing in non-human primates, Kennedy and 

colleagues have shown that the brain white-matter wiring can be analytically approximated by 

the Exponential Distance Rule (EDR)2. This rule explains the local connectivity of the brain 

solely in terms of the euclidean distance between points on the cortical surface. And so it 

follows that the compact, folded geometry of the cortex with its many sulci and gyri is formed 

by this local connectivity. This corollary implies that the brain anatomical wiring and cortical 

geometry are the two sides of the same coin and it makes sense to speak of them in agreement. 

Furthermore, this reflects theoretical work showing that the heat kernel (exponential) is the 

optimal solution for minimising distance between neighbouring points10. Indeed, recent work 

has suggested that the cortical geometry alone (as a proxy for the underlying anatomical 

connectivity) can be considered as an important feature driving brain spatiotemporal 

activity3,11,12.  

However, after deriving the EDR Henry Kennedy famously said; “I am not interested in the 

EDR itself but mainly the exceptions to the rule”. Indeed, Kennedy and colleagues have shown 

that in addition to the EDR, the brain possesses a small subset of rare long-range (LR) 

exceptions to the EDR of brain wiring4,5. Furthermore, new evidence using turbulence has 

demonstrated the fundamental role of the rare long-range anatomical connections in shaping 

optimal brain information processing6. Intuitively, brain cortical foldings defined according to 

the EDR are indeed the optimal way for brain wiring but they don’t reflect the long-range i.e. 

it is for example impossible to fold anterior-posterior brain regions in a meaningful way. 

Therefore, we suggest that the unique contribution of these rare long-range cortical connections 

changes disproportionately the topological structure of the brain wiring in such a way as to 

optimise the information processing of the brain. In this work we test this hypothesis that EDR 

and LR exceptions are fundamental to the parsimonious description of the emerging 

spatiotemporal dynamics. 

In the natural world, a fundamental principle that governs the dynamics of a system 

constrained by its structure in numerous physical and biological phenomena is the 

mathematical framework of harmonic modes. Standing wave patterns manifest in many context 

such as in music with  sound-induced vibrations of a guitar string, in physics with the electron 

wave function of a free particle described by the time-independent Schrödinger equation, or 

biology with patterns emerging within complex dynamical systems like reaction-diffusion 

model13. The beauty of the mathematical formalism of this phenomenon is that it links in a 
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single equation, the Helmholtz equation, the specific structure on which the spatiotemporal 

pattern emerges together with the temporal description in terms of oscillations and spatial 

description in terms of patterns of synchrony of the standing wave pattern itself. 

Here we used Laplacian decomposition of four different graph representations of the 

underlying anatomy to derive anatomical brain modes: exponential-distance rule (EDR)2 and 

long-range exceptions (EDR+LR), geometry-based modes (geometry) and EDR modes (EDR 

binary and EDR continuous) (Figure 1A). Our results show that EDR+LR achieves 

significantly better reconstruction of long-range functional connectivity (FC) compared to the 

other mode representations. Furthermore, pertinent to time-critical information processing, we 

show that a small subset of modes achieves a disproportionately high reconstruction of task 

MRI activity. When this subset of modes is considered, EDR+LR achieves better 

reconstruction for the 47 HCP tasks compared to the other mode representations, suggesting 

that less is more for information processing in the brain. 

 

Results 

EDR+LR reconstructs FC-SC long-range connectivity 

To examine how exponential distance rule with long-range exceptions can describe brain 

activity, we derived the EDR+LR harmonic modes from the EDR matrix fitted to the structural 

connectome with lambda of 0.162 and added the long-range exceptions to the EDR defined in 

terms of three standard deviations from a given euclidean distance range larger than 40mm. 

We constructed the normalised graph laplacian and solved its eigenvalue problem. The 

eigenvectors of the solution represent the harmonic modes with the eigenvalues sorted in 

ascending order and reflecting the spatial frequency of the modes with lower modes 

representing lower spatial frequencies and higher modes representing higher spatial 

frequencies. Overall, the spatiotemporal activity can be perceived as a weighted contribution 

of these fundamental bases unfolding over the whole time recording for the spontaneous fMRI 

or as a weighted contribution of these fundamental bases reconstructing the task-based 

activations. 

One of the features of functional connectivity is the surprisingly high functional connectivity 

between distant regions14. We first investigated to what extent the different anatomical 

representations reconstruct the long-range connections. These were derived as an intersection 

of FC connections above 0.5 FC correlations and euclidean distance between the nodes above 
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40mm (Figure 2A). We then reconstructed these connectivity profiles with an increasing 

number of modes (1-200) derived from the four representative graphs (Geometry, EDR binary, 

EDR continuous and EDR+LR) (Figure 2B). The modes are ordered sequentially according to 

their spatial wavelength represented by their eigenvalues (i.e. mode 1 has the longest spatial 

wavelength ). For all four graphs they monotonically increase the reconstruction correlation 

reaching on average 0.3 correlation with about 10 modes and by 100 modes reach on average 

0.75 correlation before plateauing close to 0.9 correlation on average for the full 200 modes. 

One noteworthy aspect is that most of the correlation reconstruction happens between 0 and 20 

harmonics suggesting that a fairly small number of harmonics is responsible for most of the 

reconstruction. At 200 modes the EDR+LR outperforms the other spatial basis (Geometry, 

EDR continuous, EDR binary, paired t-test p<10-4). 
 

Less is more - EDR+LR reconstructs task with fewer modes 

Using the same approach, we further investigated how well the different bases reconstruct the 

task-evoked brain activity from 255 healthy HCP participants. We used the 47 task-based 

contrasts derived from 7 HCP tasks each representing a different activation brain map, and 

reconstructed them for an increasing number of modes (mode 1-200). For the 7 representative 

tasks the different bases demonstrate a similar monotonic pattern with steep rise in 

reconstructed correlation before a slowdown with a near plateau-like behaviour around 200 

modes and reconstructed correlation values exceeding 0.9 for most of the bases and tasks 

(Figure 3A Top). To analyse the reconstruction pattern, we computed the FC correlation 

contribution of a given mode when added to the reconstruction. This demonstrates that the 

apparent bulk of the reconstruction is being obtained from a relatively small number of modes 

0-20 in comparison to the rest (Figure 3A Bottom). This shows that reconstructing both 

spontaneous and task-evoked activity is represented in a very small space of 0-20 modes, 

suggesting that both types of dynamics, spontaneous and task-evoked, lie in a lower-

dimensional manifold. Focusing only on the first 20 modes, we examined how the 47 task-

evoked activations maps are reconstructed in comparison to the geometric modes. On average 

EDR+LR showed the most accurate reconstruction across tasks and number of reconstructed 

modes 1-20 with EDR binary and EDR continuous being on an equal footing with the 

geometric modes (Figure 3B). By construction, the modes span an orthogonal basis set in which 

the individual mode contributions are mapped to. To motivate the neatness and accuracy of 

reconstructing the activation maps with as little EDR+LR as possible, we visually demonstrate 



the reconstruction of relational tasks for 5, 10, 15 and 20 modes showing the indistinguishable 

similarity to the activation map itself (Figure 3D). Moreover, it is not surprising that the 

EDR+LR basis, due to their unique topology, reconstruct with fewer modes more accurately 

the tasks as it can be appreciated in the motor tasks where more nuanced features are picked 

up in comparison to the geometric modes  (Figure 3E).  
 

Discussion 

The unique mathematical formulation of harmonic modes links the description of how structure 

gives rise to the emerging spatiotemporal activity of brain dynamics. We show that EDR+LR 

modes have the highest reconstruction correlation for an increasing number of modes when 

describing the FC long-range connections of spontaneous fMRI activity. Furthermore, for the 

reconstruction of the 7 activation task fMRI maps lower frequency modes contribute 

disproportionately more toward the reconstruction error. We therefore reconstructed the error 

for the 47 HCP tasks benchmarked against the geometrical modes for the first 20 modes. On 

average EDR+LR showed the most accurate reconstruction across tasks and number of 

reconstructed modes 1-20. Our results demonstrate the  importance of long-range connectivity 

as a key feature of shaping brain functional activity both for the spontaneous and task-based 

fMRI. Moreover, functional brain activity is shown to be on a lower-dimensional manifold 

span by a subset of these fundamental modes with the most appropriate representation from the 

EDR+LR graph, suggesting that less is more for efficient information processing in the brain. 

In both spontaneous and task-based reconstruction cases, the EDR+LR demonstrate high 

reconstruction only with a subset of modes from its harmonic repertoire. Despite the superior 

performance of the EDR+LR harmonic modes, it is remarkable that the other harmonic bases, 

geometric and EDR-based, performed strongly as well. This reflects a fundamental insight 

where large-scale brain organisation can be described as lying in a low-dimensional manifold. 

This in part can be explained by the brain’s coordinated cognition and behaviour which cannot 

happen without integrative tendencies of its underlying dynamics. Indeed, brain dynamics 

operating in a reduced number of dimensions has been shown to predict more effectively the 

brain's behaviour15.  As such one can talk of brain activity as a flow on this low dimensional 

manifold embedded in the space of these relatively few harmonic modes16.  

One of the fundamental considerations is what type of brain’s dynamics we wish to 

reconstruct. Unlike the traditional approach where the whole static functional connectivity is 

reconstructed3, we focused on reconstructing the most salient features of the brain's 
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spontaneous fMRI activity, namely the functionally strong  long-range connection. Our work 

underscores the cardinal role of long-range connectivity in cognitive processing and advocates 

for prioritising the reconstruction of exceptional connections over exhaustive coverage of the 

entire functional connectivity matrix. Moving beyond, it is important to consider temporally 

evolving descriptions of brain dynamics as recent work has demonstrated the relevance of 

dynamics in understanding brain function and its related pathologies17. Moreover, many whole-

brain modelling techniques have been suggesting the need to consider further descriptors of 

brain activity that goes beyond the static FC description18 

In this work, we derived both EDR binary and EDR continuous harmonic modes. These 

reflect different methodological considerations when calculating the laplacian eigenmaps 10. 

We have applied the continuous form of the graph laplacian on the EDR (EDR continuous) 

showing that this simple change improves the reconstruction accuracy by about 0.02 correlation 

to the binarized version (EDR binary) making it practically on the same footing as the 

geometric bases. It is therefore warranted to unify the methodological approaches before 

comparing the superiority of the different anatomical features as the differences might be 

simply explained by methodological choices themselves. Therefore we caution future research 

to unify the applied methodologies in this direction. 
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Methods 

Experimental Data 

HCP Functional MRI 

We used the publicly available Human Connectome Project (HCP) dataset, Principal 

Investigators: David Van Essen and Kamil Ugurbil: 1U54MH091657) with the funding coming 

from sixteen NIH Institutes and Centres supporting the NIH Blueprint for Neuroscience 

Research; and by the McDonell Centre for Systems Neuroscience at Washington University. 

All participants joined voluntarily and provided informed consent. The open-access data used 

in this study were obtained through the WU–Minn HCP consortium, following approval from 

the local ethics committee. The data were shared with the authors in accordance with the terms 

specified by the HCP for data usage. All procedures conducted in this study adhered to the 

protocols outlined in these data use terms. For a comprehensive description of the image 

acquisition protocol, preprocessing pipelines19, and ethics oversight, please refer to the detailed 

account provided19,20. 
 

Spontaneous fMRI dataset 

We used the spontaneous fMRI dataset from the freely accessible database with  connectome 

DB account at https://db.humanconnectome.org. Timeseries were minimally processed. 

Consistent with the Pang et al. 2023, we used a subset of 255 participants (22-35yo,  132 F and 

123 M) who completed all spontaneous and tasks-based fMRI recordings, further excluding 

twins and siblings. The neuroimaging acquisition was carried out on a 3-T connectome-Skyra 

scanner (Siemens). A single spontaneous fMRI acquisition, lasting approximately 15 minutes, 

was conducted on the same day. During this session, participants kept their eyes open with 

relaxed fixation on a projected bright crosshair against a dark background. The HCP website 

offers comprehensive details on participant information, acquisition protocols, and data 

preprocessing for both spontaneous and the seven tasks. In summary, the data underwent 

preprocessing using the HCP pipeline, which employs standardised methods with FSL (FMRIB 

Software Library), FreeSurfer, and Connectome Workbench software. This standardised 

preprocessing encompassed correction for spatial and gradient distortions, head motion 

correction, intensity normalisation, bias field removal, registration to the T1-weighted 

structural image, transformation to the 2-mm MNI space, and application of the FIX artefact 

removal procedure. Head motion parameters were regressed out, and structured artefacts were 

removed using independent component analysis, followed by FMRIB’s ICA-based X-
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noiseifier (ICA+FIX) processing. The preprocessed time series for all grayordinates were in 

the HCP CIFTI grayordinates standard space, available in the surface-based CIFTI file for each 

participant during spontaneous fMRI. 
 

Tasks-based fMRI dataset 

For the task-based fMRI analysis, we obtained fMRI data from 7 distinct task domains known 

to reliably engage a diverse range of neural systems3,19. The tasks included were social, motor, 

gambling, working memory (WM), language, emotion, and relational. We used the specific 

contrasts within each task domain, highlighting the key contrast investigated in this study. 

These contrasts were provided by3 from https://osf.io/xczmp/ in 

“S255_tfMRI_ALLTASKS_raw_lh” .mat file. In total, the analysis encompassed 47 contrasts, 

incorporating the 7 key contrasts. In brief, the analysis was performed on individual task-

activation maps generated through FSL's cross-run (Level 2) FEAT analysis21. The task maps, 

provided by the Human Connectome Project (HCP), were used with minimal smoothing (2 

mm), and mapped onto the fsLR-32k CIFTI space. This mapping was achieved using 

multimodal surface matching, resulting in a representation of each individual's task data 

(32,492 vertices in each hemisphere). Additional information about each task and contrast as 

well as further details on the data can be found3,19. 
 

fMRI parcellation 

A custom MATLAB script, utilising the 'ft_read_cifti' function from the Fieldtrip toolbox, was 

employed to extract the average time series of all grayordinates in each region defined by the 

Glasser360 parcellations (180 regions per hemisphere) in the HCP CIFTI grayordinates 

standard space. For each hemisphere the vertex-space to ROI-space meant going from 

32,492x1200 to 180x1200 for spontaneous fMRI and 32,492x1 to 180x1 for task-based fMRI. 

Consistent with Pang et al. (2023) our analysis focused on the left hemisphere only. 
 

HCP Diffusion MRI 

To obtain the structural connectivity for the fitting of the EDR and derivation of long-range 

exceptions to the EDR, we used the high-resolution connectivity maps from dMRI 

tractography22. These were provided by3 in “S255_high-resolution_group_average 

_connectome_cortex_nomedial-lh” .mat file. In brief, the connectome was derived by 

estimating the connectivity of each of the 32,492 vertices within the cortical surface mesh by 

tracing streamlines from each point until they terminated at another point. Connection weights 
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between vertices, treated as nodes, were determined as the number of interconnecting 

streamlines without normalisation23. The dMRI tractography was conducted on individuals 

from the Human Connectome Project (HCP). Subsequently, the individual weighted 

connectivity matrices were combined, each of size 32,492 × 32,492, to generate a group-

averaged connectome. The weights in this connectome represented the average number of 

streamlines, providing a comprehensive depiction of group-level connectivity. Further details 

can be found in3. 
 

Structural MRI 

For the fitting of the EDR, we used the euclidean distance between the vertices of the cortical 

mesh representation for the left hemisphere (32,492x32,492). This mesh was derived from the 

FreeSurfer’s fsaverage population-averaged template available on 

github.com/ThomasYeoLab/ CBIG/tree/master/ data/templates/surface/fs_LR_32k. It is to be 

noted, we used the version provided by3 in the “fsLR_32k_midthickness-lh” .vtk file. 
 

Exponential Distance Rule (EDR) 

Previous work has demonstrated that the brain white-matter wiring, based on retrograde tract 

tracing in non-human primates, can be analytically approximated by the Exponential Distance 

Rule (EDR) 2. Here, we derived the Exponential Distance Rule of the underlying human 

anatomy using diffusion MRI. Mathematically, the exponential distance rule can be described 

with exponential decay function as follows: 

 

𝐶!,#$%& 	= 	𝐴𝑒'((*(!,#)) 

 

where r(i,j) is the euclidean distance between vertices i and j and 𝜆 is the decay. By fitting the 

exponential function to the dense connectome, we set A= 0.066 and 𝜆 = 0.162 mm-1 where 

lambda is consistent with previous literature4,6. 

 

Relationship to Belkin and Niyogi 

The exponential distance rule, as an optimal solution for connecting distance-separated brain 

regions in the brain, can also be intuitively understood from first principles. Belkin and 

colleagues have analytically shown the relationship between graph Laplacian, Laplace 

Beltrami Operator and the heat kernel which is the optimal solution for locality preservation - 
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formally as 𝑊!# = 𝑒
!"#$%!$&#"

'

( where 𝑡 is the decay parameter of the heat kernel10. It can thus 

be appreciated that this equation also follows exponential decay (gaussian) similar to the EDR. 

 

Harmonic Modes 

In this work, we used four different types of graph representations to describe various aspects 

of anatomical features or methodological approaches. Namely, we carried out the analysis on 

what we call Geometric, EDR binary, EDR continuous and EDR+LR modes. In what follows, 

we describe the remaining three types of harmonic modes representations. 

 

EDR binary: For the EDR binary, we use the EDR with the same parameters as in Pang et al. 

(2023) to define the weight of a given edge between vertices i and j.  In other words, the weight 

is determined by the euclidean distance between regions i and j and the fitted lambda parameter, 

𝜆 = 0.12 mm-1  (see section Exponential Distance Rule). Then, as in Pang et al. (2023), we 

created a binary adjacency matrix where nodes i and j are retained and binarised only if the 

weight strength surpasses randomly distributed distribution of the weights. This option results 

in a binary adjacency matrix whereby 𝐶!# = 1 if i and j are above randomly distributed 

distribution of the weights and 𝐶!# = 0 if i and j are below the randomly distributed distribution 

of the weights. The choice of this approach was motivated to stay consistent with previous 

work by Pang et al. (2023) in order for the results to be directly comparable. 

 

EDR continuous: For the EDR continuous, we similarly use the EDR with the same 

parameters to define the weight of a given edge between vertices i and j using the EDR with 𝜆 

= 0.12mm-1. Unlike the thresholding in EDR binary (applied in Pang et al. (2023)) where 

connections are retained and binarised if they surpass connection weights from a randomly 

derived distribution , here all the connections and their weights are kept. This option results in 

a weighted  adjacency matrix whereby 𝑊!# =	𝐴𝑒'((*(!,#)). Furthermore, we argue in this paper 

that this detailed explanation between EDR binary and EDR continuous adjacency matrices is 

warranted as it zeroes in on what is an appropriate comparison between graph laplacian and 

continuous Laplace-Beltrami analysis and we motivate future comparative research in this 

direction. 
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Geometry: The geometric modes were calculated using the Laplace Beltrami Operator (LBO) 

on the cortical mesh. We used the publicly available version from previously published work 

which can be downloaded from https://osf.io/xczmp/ in “fsLR_32k_midthickness-

lh_emode_200” .txt  file3. In brief, the LBO is in general defined as follows: 

 

𝛥:= 1
𝑊𝛴𝑖,𝑗

𝛿
𝛿𝑥𝑖
(𝑔𝑖𝑗𝑊 𝛿

𝛿𝑥𝑗
), 

With 𝑔!# being the inverse of the inner product metric tensor 𝑔!#: =< +
+𝑥𝑖

, +
+𝑥𝑗

>, 𝑊:= √ 𝑑𝑒𝑡(𝐺) 

and 𝐺:= (𝑔!#). The solution of the eigenvalue problem was implemented in a python package 

LaPy using the cubic finite element method24. For further details consult3. Although not 

explicitly stated, the derivation leverages an exponential kernel that is reminiscent of the EDR. 

 

EDR+LR: Previous research has shown that human as well as non-primate anatomy is 

characterised by a relatively small proportion of long range outliers to the EDR4,6. Therefore 

for the EDR continuous adjacency matrix we wanted to implement a version where these long-

range (LR) exceptions are taken into account. Using the structural connectivity matrix, we 

computed the binned distribution (400 bins) as a function of euclidean distance. We defined 

connectivity exceptions as 3 standard deviations above the mean for a given distance bin that 

are longer than 40mm. To derive the EDR+LR connectivity matrix we combine the EDR 

continuous with LR exceptions to the EDR. 

 

EDR+LR relationship to Connectome Harmonics 

Combining short-range and long-range connectivity can be performed in many ways. Indeed 

our previous work on connectome harmonics has defined the anatomical connectivity in terms 

of short-range, nearest-neighbour connections on the cortical surface, combined together with 

long-range connections, derived from the diffusion MRI in terms of the connectome9. In this 

light, here, we derive the short range connections in a more principled way through the “EDR 

continuous” while accounting for the long-range connections in terms of the exceptions to the 

EDR as stated above. Furthermore, we avoid binarization of the adjacency matrix for the 

calculation of the laplacian as it has shown to retain important information in the reconstruction 

of both spontaneous and task-evoked fMRI from our results on binary and continuous EDR 

brain modes. 

. 
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Laplacian Decomposition 

Having derived the EDR+LR, EDR binary and EDR continuous adjacency matrix, we 

calculated the normalised graph Laplacian as  

𝐿23*4 	= 	𝐷'5/7𝐿	𝐷'5/7  

with  𝐿 = 𝐷 − 𝐴 where D is the diagonal degree matrix defined as 𝐷 = ∑2!85 𝐴(𝑖, 𝑗). Finally, 

the harmonic modes were computed as eigenvectors of the following eigenvalue problem 

𝛥9𝜓:(𝑥!) 	= 	𝜆𝜓:(𝑥!)		, ∀𝑥! 	𝜖	𝜐 

with 𝜆: , 𝑘	𝜖	1, . . . , 𝑛 are the eigenvalues of 𝛥9 and 𝜓: is the 𝑘;< harmonic mode. 

 

Decomposition of brain activity with harmonic modes 

We can represent the spatiotemporal spontaneous fMRI recording and the activation maps of 

task-based fMRI as a weighted contribution of the harmonic modes as follows 

𝐹(𝑥, 𝑡) 	= 	C
=

:85

𝑎:(𝑡)𝜓:(𝑥) 

Where 𝐹 is the spatiotemporal timercordings for each subjects with dimension 32,492x1200 

(x,t), 𝑎:(𝑡) has dimension 1x1200 and is the contribution of 𝑘;< harmonic to the F timecourse 

at time t. Note that for the purely spatial data of task-based fMRI the same applies except of 

the contributions being independent of time ie 𝑎:(𝑡) → 𝑎:.  Both in spontaneous and task-

based fMRI, the contributions are computed as the inner product between the spatial patterns 

and harmonic modes 

 

𝑎:(𝑡) 	=	< 𝐹(𝑥, 𝑡), 𝜓:(𝑥) >. 
 

Reconstruction error 

To compare both the spontaneous and task-based empirical fMRI data with the reconstructed 

data with a subset of harmonic modes, we first parcellated the data to Glasser360 parcellation 

(we focused on the left hemisphere resulting in 180 nodes). For the spontaneous fMRI, we 

calculated the interregional functional connectivity (FC -180x180) and focused on the most 

salient features by reconstructing the long-range functional connectivity derived as a subset of 

connections with high-correlation values (> 0.5 correlation) and a long euclidean distance  (> 

40mm). Then, we calculated the reconstruction error as the Pearson's correlation between the 

empirical and reconstructed long-range functional connectivity. For the task-based fMRI we 



calculated the reconstruction error as the Pearson's correlation between the empirical and 

reconstructed activation maps. 
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Figure 1. The crucial role of long-range connectivity for accurately describing whole-

brain dynamics. A) The functional dynamics measured with fMRI emerge from the 

underlying anatomical structural connectivity which can be represented as graphs. Here, we 

study the four main graph representations: 1) geometrical modes (Pang et al. 2023); 2) 

exponential distance rule (EDR, binarised); 3) EDR (continuous) and 4) EDR with long-range 

exceptions (EDR+LR). B) With regards to the graph representations, i) the different modes are 

derived from applying the laplace decomposition on the graph representation by solving the 

eigenvalue problem. The different modes are in ascending spatial frequency.  ii) These modes 

are used to reconstruct the fMRI activity by a linear combination of their contributions. iii) This 

is used to reconstruct the spontaneous fMRI activity and in particular the functional long-range 

connectivity exceptions (derived as high-correlation values, >0.5 correlation, and over a long 

euclidean distance, >40mm, see Methods), as well as all the 47 task fMRI activation maps. C) 

The four different graph representations were constructed and decomposed into their associated 

modes. Note that the EDR modes all use a lambda parameter of 0.162mm-1, which is coming 

from the fitting of the empirically derived connectome. D) Demonstrating the importance of 

long-range connections, EDR+LR achieves a superior reconstruction of long-range fMRI 

connectivity compared to geometric, EDR (binary) and EDR (continuous) graph 

representations. E) Equally important, the EDR+LR needs fewer modes to reconstruct task data 

compared to the three other graph representations, demonstrating the importance of long-range 

connectivity.3 Parts of the figures have been modified from Pang et al. (2023).  

https://paperpile.com/c/Tl1N43/tkHd


 
 

 

 

Figure 2. Better reconstructions of brain dynamics are found with EDR and rare long-

range exceptions in the graph representation. A) One of the most important features of 

cortical dynamics are long-range functional connections (defined by high correlation values, 

>0.5 correlation, and Euclidean distance, >40mm). B) EDR+LR outcompetes the other graph 

representations as shown by the reconstruction of FC long-range connections for an increasing 

number of modes (1-200) for the four representative graph representations. The individual lines 

show the average across all 255 HCP participants. C) EDR+LR is significantly better than the 

other graph representations when using a reconstruction with 200 modes as shown by the 

average result for the correlation values across all the 255 HCP subjects (paired t-test p<10-4). 

Parts of the figures have been modified from Pang et al. (2023). 
 

 



 

Figure 3. EDR+LR uses fewest harmonic modes to reconstruct task activity. A) For each 

of four graph representations (top panel) is shown the reconstruction of seven representative 

activation task fMRI maps. As can be seen, lower frequency modes contribute 

disproportionately more toward the reconstruction correlation as it can be seen by the elbow 

around 20 modes (lower panel). B) This can also be seen in the reconstruction error for all 47 

HCP tasks for the EDR cases, each benchmarked against the geometrical modes for the first 20 

modes, where the top panel shows hues of blue with better performance of the EDR modes 

while red hues mean better performance of the geometric modes. The lower panel shows the 

average across the 47 HCP tasks. C) Individual mode contribution towards the reconstruction 



of the relational task. We show the disproportional contribution of some modes (1, 2, 3, 4, 6, 

15) to the overall reconstruction, where the brain renderings show the reconstruction to the 

overall activation map (far left). D) Similarly, for the motor task target (far left), we compare 

the overall correlational contributions of the number of modes (using 20, 15, 10 and 5 modes) 

when using EDR+LR and geometry as the underlying representations. As can be seen, the 

reconstruction with EDR+LR converges more quickly for lower modes than geometry, 

suggesting that less is more . 


