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Highlights:6

1. We present a multimodal analysis of the laminar organization of four visual regions7

(V1, V2, V3, hMT+), characterizing progressive visual hierarchy levels in humans. This8

analysis spans from post-mortem microscopy and quantitative MRI (qMRI) to in-vivo9

qMRI and laminar fMRI during resting state.10

2. Among the three microscopy contrasts, parvalbumin, a marker of interneuron density,11

emerges as the most distinctive regional feature. Notably, the parvalbumin laminar profiles12

vary across hierarchy levels, with hMT+ showing the greatest divergence compared to13

V1, V2, and V3.14

3. Quantitative R∗
2 (qR∗

2) measurements, from both post-mortem and in-vivo data, reveal15

a clear increase towards the superficial cortical layers. These depth-dependent patterns16

closely mirror the laminar profiles observed in both task and resting-state fMRI.17
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4. Surprisingly, no substantial difference was observed in laminar R∗
2 profiles between18

post-mortem and in-vivo data across the visual areas.19

Abstract: Understanding the relationship between brain structure and function is a central20

goal in neuroscience. While post-mortem studies using microscopic techniques have provided21

detailed insights into the brain’s cytoarchitectonic and myeloarchitectonic patterns, linking22

these structural findings to functional outcomes remains challenging. Magnetic resonance23

imaging (MRI) has emerged as a powerful non-invasive tool for studying both structure and24

function, but discrepancies in spatial resolution between structural and functional imaging,25

especially in layer-fMRI, complicate the interpretation of functional results. In this study, we26

explore how visual cortical hierarchy relates to microscopic and mesoscopic laminar features.27

Focusing on visual areas that span progressive hierarchical levels, V1, V2, V3, and hMT+,28

we apply a multimodal approach combining post-mortem histology, post-mortem and in-vivo29

quantitative MRI (qMRI), and resting-state layer-fMRI. Using the open-access post-mortem30

AHEAD dataset, which integrates histological and qMRI contrasts from the same brain31

samples, we bridge microscopic observations with qMRI data. In parallel, we incorporate32

high-resolution qR∗
2 MRI and resting-state layer-fMRI from the same participant, allowing for33

a comparative analysis of laminar profiles across cortical depth. For computing laminar profiles,34

we developed an analysis pipeline that bridges histology images, mesoscopic qMRI, and layer-35

fMRI. Our findings highlight parvalbumin laminar profiles (reflecting interneuron parvalbumin36

density) as the most discriminative feature for differentiating brain areas. Additionally, we37

report laminar quantitative T ∗
2 (1/R∗

2) profiles from post-mortem and in-vivo data, together38

with T ∗
2 -weighted resting-state layer-fMRI, all of which exhibit a similar overall shape across39

modalities. Using our methodological framework, a similar laminar characterization can be40

extended to study other brain regions. Generative models for layer fMRI will benefit from41

incorporating these new empirical microstructural (parvalbumin) and physical quantitative42

(qR∗
2) data, leading to more area-specific and accurate models.43

1 Introduction44

Understanding the functionality of any physical component fundamentally requires exploring the relationship45

between its structure and function. This principle is a cornerstone of neuroscience, where one of the field’s46

enduring goals is to elucidate how brain structure underpins its myriad of functions. Since the early 20th47

century, scientists have conducted extensive post-mortem studies on the brain’s structure, particularly48
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using microscopic techniques that offer spatial resolution at the micrometer scale. These studies have led49

to the discovery that the brain’s cortical architecture is not uniform. Different brain regions exhibit distinct50

laminar cytoarchitectonic and myeloarchitectonic patterns, allowing for the establishment of cortical51

parcellations over time (Brodmann, 1909; Nieuwenhuys, 2013; Vogt, 1906; Zilles and Amunts, 2010).52

Despite the valuable insights gained from these studies, post-mortem approaches have inherent limitations53

in capturing functional coupling of microstructures, as functional testing is typically not conducted on the54

same data sample. Although recent studies have demonstrated the feasibility of combining in-vivo and55

ex-vivo data from the same participants (Boon et al., 2019; Jonkman et al., 2019), this approach remains56

challenging and is not yet widely adopted (Fischl and Sereno, 2018).57

One candidate technique to complement post-mortem brain imaging is magnetic resonance imaging (MRI)58

as a non-invasive method for studying both brain structure and function (Bandettini et al., 1992; Ogawa59

et al., 1992). Recently, advancements in ultra high magnetic fields (Koopmans and Yacoub, 2019; Shmuel60

et al., 2007; Uǧurbil et al., 2003; Uludaǧ et al., 2009) have enabled significant improvements in spatial61

resolution, allowing for the imaging of the cortical landscape at the mesoscopic scale (< 1 mm). While62

in-vivo structural imaging could reach a spatial resolution of <=0.35 iso. mm (Bollmann et al., 2022;63

Gulban et al., 2022; Lüsebrink et al., 2021), the upcoming ‘layer-fmri field’ for functional imaging has64

reached submillimeter resolution and aims to test functional hypotheses related to areal microcircuits in65

vivo (De Martino et al., 2018; Dresbach et al., 2024a; Huber et al., 2017; Petro and Muckli, 2017; Pizzuti66

et al., 2023; Viessmann and Polimeni, 2021). Despite the push for a higher spatial resolution (below 0.567

iso. mm) (Feinberg et al., 2023; Vizioli et al., 2021), currently, the routinely used functional resolution68

is 0.8 mm isotropic. This discrepancy in resolution between structural and functional scans, leads to69

new challenges in interpreting the current layer-fMRI results. A potential solution to these challenges is70

the integration of multiple modalities. For the question of brain parcellation, combining microstructural71

post-mortem data with topographical and functional in-vivo datasets has resulted in the development72

of a new multimodal parcellation of the human cerebral cortex (Glasser et al., 2016). This approach73

has become the consensus standard for fMRI studies. Similarly, quantitative MRI (qMRI) techniques,74

combined with modeling approaches, provide critical microstructural information to complement in-vivo75

imaging (Dinse et al., 2015; Trampel et al., 2019; Weiskopf et al., 2021). Notably, among qMRI data,76

R∗
2 (R∗

2 = 1/T ∗
2 ) relaxation rate serves as a key measurement in understanding tissue microstructure,77

reflecting changes in magnetic susceptibility that can inform us about iron and myelin deposition. This is78

particularly relevant in fMRI, where the BOLD signal is predominantly R∗
2-weighted, making R∗

2 a key79

bridge between microstructural properties and functional imaging results. Here, we propose a multimodal80

study that aims to explore how cortical visual hierarchy relates to microscopic and mesoscopic laminar81

features. We provide a comprehensive laminar characterization of four visual areas that span progressive82
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hierarchical levels such as V1, V2, V3 and hMT+. We combined post-mortem histological and qMRI data83

with in-vivo high-resolution quantitative and resting-state layer-fMRI (rs-fMRI). For the first part, we used84

the recently published open access post-mortem AHEAD dataset (Alkemade et al., 2022). This dataset85

includes multiple histological contrasts and three qMRI contrasts from the same brain, providing a unique86

opportunity to bridge MRI with direct microscopic observations. For the second part, we complement87

this post-mortem dataset with our in-vivo dataset combining high-resolution qR∗
2 MRI at 0.35 iso. mm88

resolution with resting-state layer-fMRI at 0.8 iso. mm from the same participant. By comparing laminar89

profiles from the two datasets, we provide a unified perspective on the laminar organization of these visual90

areas. Among the three microscopy contrasts, parvalbumin (marker of interneurons density) emerges as91

the most distinctive regional feature that varies across hierarchical levels. Notably, hMT+ parvalbumin92

laminar profile mostly differs from V1, V2, and V3. Moreover, we provide quantitative laminar profiles93

of R∗
2 for both post-mortem and in-vivo brain samples. Our laminar quantification on microstructural94

composition and physical R∗
2 can be integrated in generative laminar fMRI models (Havlicek and Uludağ,95

2020) to improve the areal laminar predictions and the interpretability of layer-fMRI results. Finally,96

we developed, streamlined and shared all the analysis methods used in this paper to cover the three97

modalities (histology, qMRI, layer-fMRI) together with our MRI/fMRI dataset. This framework of analysis98

offers a versatile approach that can be extended to investigate different brain areas, providing the tools to99

enhance our understanding of structure to function coupling across the entire cortex.100

2 Materials and methods101

2.1 Data overview102

Our data set includes two main sources: the post-mortem 3D whole brain microscopy and 7T quantitative103

MRI (qMRI) from AHEAD dataset and an in-vivo whole-brain qMRI (R∗
2) at 0.35 iso. mm resolution and104

resting state fMRI at 0.8 iso. mm from the same participant. A data overview is illustrated in (Figure 1).105

The post-mortem AHEAD dataset is the first publicly available dataset containing a 3D whole-brain map106

of multiple microscopy contrasts and 7T qMRI from two human specimens. Whole-brain MRI acquired107

before sectioning consists of proton density, R1 and R∗
2 MRI maps with an isotropic resolution of 0.4 mm108

(Figure 1C). Coronal slices with in plane resolution of 0.021 mm and 0.20 mm across slices were stained109

for five microscopy contrasts in an interleaved fashion: two histology stains - Nissl (Thionin, glial and110

neuronal cell body density) and silver stain (Bielschowsky, fiber density) - and three immunochemistry111

stains -calbindin, calretinin, parvalbumin (interneurons density). Example slices at original resolution are112
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Figure 1: Data overview. A-C) Post-mortem human brain AHEAD dataset consisting of three microscopy stains: Nissl
(Thionin) as neural density, Silver (Bielschowsky) as fiber density and Parvalbumin as interneurons density correlate (B) and
three qMRI contrasts: proton density (PD), longitudinal relaxation (R1) and transversal relaxation (R∗

2) (C). Original stains
were collected at 20 micrometers, while qMRI were collected at 400 micrometers. Both modalities were co-registered in the
same brain space at 150 x 150 x 200 micrometer resolution through 2D-3D registration techniques with respect to the
blockface images (A). In-vivo human brain dataset consisting of four runs of whole brain multi-echo multi-shot anatomical
MRI at 350 micrometer isotropic resolution (D) and resting-state fMRI data at 0.8 mm isotropic with occipital coverage
(E). Three echoes were collected and used to fit a mono-exponential curve and compute S0 and R∗

2 (D). rs-fMRI brain
coverage and a voxel time course is shown in panel (E). Co-registration between anatomical and fMRI data was performed
between the average echoes and average time course images.
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shown in (Figure 1B). Note that calbindin and calretinin were only available at the medial part (central)113

of the brain, not covering the visual areas of interest. Notably, the authors used advanced post-processing114

techniques to align the coronal slices and reconstruct a 3D multi-contrast staining map aligned to the115

qMRI maps. As a result, the microscopic underpinning of MRI slices can be studied through the direct116

link between microscopy and MRI data. For a comprehensive and detailed description of post-mortem117

data collection and reconstruction of AHEAD dataset please refer to the original paper from (Alkemade118

et al., 2022). The in-vivo whole brain anatomical R∗
2 images and resting-state BOLD fMRI data were119

collected from the same participant with the whole-body MAGNETOM 7T “Plus” (Siemens Healthineers,120

Erlangen, Germany) at Scannexus B.V. (Maastricht, The Netherlands) using a 32-channel RX head-coil121

(Nova Medical, Wilmington, MA, USA). The shimming procedure included the vendor-provided routines122

to maximize the field homogeneity within the imaging slab. Anatomical images were collected at 0.35 iso123

mm resolution using a newly developed multi-echo multi-shot gradient recalled echo sequence with 3D124

echo planar imaging (EPI) readout (Gulban, 2024) (Figure 1D). By combining the strength of a 3D125

acquisition and highly segmented k-space through a multi-shot technique, we could collect 0.35 iso. mm126

whole-brain anatomical images with very limited geometric distortions in less than 10 min acquisition time127

(6 min 48 s). We used a multi-echo 3D EPI sequence (3 echoes), hereby referred to as 3D ME EPI, with128

the following main parameters: field of view (FoV) = 200x200x130 mm; orientation = sagittal; bandwidth129

= 546 Hz/Px; repetition time (TR) = 52.8 ms; vol.TR = 396 s; echo time (TE) = [9.76, 24.96, 40.16]130

ms; flip angle (FA) = 10°; Dual polarity = on; phase partial fourier = off; Segmentation = 40; EPI factor131

= 5; PAT mode=CAIPIRINHA; Acceleration factor phase encoding (PE)x3D=3x2; CAIPI trajectory132

= w/o z-blips. The complete protocol and the data used in this manuscript are publicly available in133

Zenodo: https://doi.org/10.5281/zenodo.14147820. We collected a total of four runs. We also used134

an available MP2RAGE at 0.35 mm isotropic previously collected in a separate session as “slab-stitched135

MP2RAGE” (Gulban, 2024). Briefly, five partial brain slabs at 0.35 iso. mm were concatenated to136

achieve whole-brain coverage. Each slab was collected within a single 10 minute run. The slabs were137

stitched in a post-processing step to have whole-brain images. Resting-state fMRI data (rs-fMRI) were138

collected by using a 2D GE EPI sequence with blood oxygen level dependent (BOLD) contrast (based139

on (Moeller et al., 2010)) with 0.8 isotropic mm resolution and coverage of the visual areas of interest140

(Figure 1E). The in-plane field of view was 140 × 137 mm (176 × 172 matrix) for a total of 58 acquired141

slices. The imaging parameters were: TE = 24.6 ms, TR = 2000 ms, flip angle FA = 69°, in plane142

partial Fourier factor 6/8, GRAPPA=3, multi-band (MB)=2. The raw data and the scanning protocol are143

available in Zenodo: https://doi.org/10.5281/zenodo.14164885. We placed a small functional imaging144

slab according to a predetermined positioning based on results from a functional visual localizer obtained145

in an independent experimental session (Pizzuti et al., 2024) using the auto-align sequence (AAscout)146

from Siemens. Before the acquisition of the main run, we collected 10 volumes for distortion correction147
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with the settings specified above but opposite phase encoding direction (posterior-anterior). A total of148

300 volumes were collected in 10 minutes while the participant was asked to fixate a black fixation cross149

on a gray background. A frosted screen (distance from eye to screen: 99 cm; image width: 28 cm; image150

height: 17.5 cm) at the rear of the magnet was used to project the visual stimuli (fixation cross) (using151

Panasonic projector 28 PT-EZ570; Newark, NJ, USA; resolution 1920x1200; nominal refresh rate: 60 Hz)152

that participants can watch through a tilted mirror attached to the head coil.153

2.2 Region of interest definition and cortical segmentation154

We focused our laminar analysis on the following visual areas: V1, V2, V3, and hMT+. The same155

Region-of-Interest (ROI) definition procedure was applied to both post-mortem and in-vivo dataset. For156

early visual areas (V1, V2, V3) we coregistered our data to a visual probabilistic functional atlas (visfatlas)157

(Rosenke et al., 2021) using cortex-based alignment as implemented in BrainVoyager (Goebel, 2012). For158

hMT+ we used the atlas published by Huang et al., 2019 since hMT+ was only partially included in the159

visfatlas (one hemisphere was missing in the current release). A schematic illustration of our ROI definition160

is reported in Figure 2A and in Supplementary Figure 2. By using visfatlas, we aimed to include161

the extent of the visual ROIs that can feasibly be stimulated during an fMRI, due to the reduced visual162

field that can be presented as stimulus in the scanner. For the AHEAD dataset, we used the ‘blockface’163

images to which both microscopy and qMRI maps were aligned to (Figure 1A). Blockface images were164

obtained during sectioning and reconstructed as 3D volume at 0.15 x 0.15 x 0.2 mm resolution. In165

order to correctly import the post-mortem blockface images into BrainVoyager, we first make isotropic166

voxels (0.2 iso. mm) and then inverted the contrast. Within BrainVoyager, we downsampled the spatial167

resolution to 0.5 iso. mm and aligned to the ACPC space. For the in-vivo dataset, we used UNI contrast168

images from MP2RAGE at original resolution of 0.35 iso. mm coregisted to 3D ME EPI and to fMRI169

data. We followed Brainvoyager’s ‘Advanced Segmentation Pipeline’ to compute white and gray matter170

tissue segmentation. A manual refinement of the white matter segmentation was performed by the author171

A.P. in order to remove the mislabeled voxels creating holes or false geometries, especially around the172

occipital pole (e.g. around the sinus, subcortical areas). The resulting segmentation files (one from173

blockfase images and the one from MP2RAGE images) are then used to reconstruct the white matter174

surfaces within BrainVoyager. On each surface, we defined hMT+ by manual drawing and by matching175

the characteristic macro-anatomical features reported by Huang and colleagues (e.g. cortical localization,176

cortical surface areas) (Figure 2A, Supplementary Figure 2). The white matter surface was used as177

input for the cortex-based alignment pipeline of BrainVoyager. Once the alignment to the visfatlas was178

successfully performed, the ROIs on the cortical surface were all mapped back into the volume space179
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Rosenke et al. 2021
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Figure 2: Overview of the two methodological steps. Panel (A) schematically illustrates the procedure used to define
the regions of interest. A cortex-based alignment to the functional visual atlas (visfatlas, Rosenke et al. 2021) was used
to define V1, V2, V3, while a macroanatomical procedure guided the definition of hMT+ to match a probabilistic atlas
(Huang et al. 2019). Please, inspect Supplementary Figure 2 for an extended overview of our ROI definition. Panel
(B) illustrates an example of input (i) for the computation of the geometric cortical layers using the program LN2 LAYERS

with the -equivol option. As output, normalized equivolume cortical depth measure (iii) is discretized in 11 equivolume
layers (iv). Note that 11 layers are chosen here as an example for visualizing discrete layers; for the main results, the entire
cortical depth (iii) is used to compute layer profiles as 2D histograms.

(depth sampling -1 to +3 mm) within BrainVoyager and exported as NIFTI. We projected back into the180

original resolution 0.15 x 0.15 x 0.2 mm (for AHEAD dataset) and 0.175 iso. mm (for in-vivo dataset)181

using the program -greedy with ‘LABEL’ interpolation option to preserve the binary nature of the data182

(Tustison et al., 2010). The final resolution for in-vivo data (0.175 iso. mm) was chosen to match183

the resolution of computed R∗
2 map (see In vivo MRI and fMRI signal extraction paragraph). Finally, a184

careful manual tissue segmentation around ROIs in the same native space was performed by A.P. and185

independently reviewed by O.F.G by using ITK-SNAP software (Tustison et al., 2010). Manual edits were186

lastly polished by using LN2 RIM POLISH from LayNii (Huber et al., 2021) that implements a smoothing187

procedure using a combination of morphological operations of dilation and erosion. An exemplary slice188

showing the quality of our segmentation is reported in Figure 2B, ii. Within the final gray matter space,189

we projected the ROIs using LN2 VORONOI from LayNii.190

2.3 Geometric cortical layers191

The definition of cortical depth measures for both post-mortem (at 0.2 iso. mm, nominal) and in-vivo192

dataset (0.175 iso. mm, nominal) is based on the accurate tissue segmentation (Figure 2, B (ii))193
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and was performed within LayNii using the LN2 LAYERS -equivol program. This program attributes194

a normalized (0-1) cortical depth measure to each voxel in 3D according to the equivolume principle195

(Figure 2, B (iii)). Only in the post-mortem data, we ran the algorithm iteratively on each 2D slice196

(0.15 x 0.15 mm), since the 3D reconstruction inevitably comes with misalignments and geometrical197

deformation. We are aware that the equivolume principle is defined for 3D data, however we qualitatively198

assessed that the amount of errors rising by using a slice-by-slice approach was less compared by using199

the 3D reconstructed data. Note that, most of the computational mistakes from the slice-by-slice layering200

procedure were automatically excluded from further analysis due to the ‘cutting angle’ filtering approach201

(see AHEAD laminar signal extraction paragraph). Laminar profiles were computed and shown as 2D202

histograms. The number of bins along the two dimensions (x-as cortical depth and y-as voxel intensity)203

was adjusted according to the region and the contrast represented. For each 2D histogram, we binned204

the cortical depth with 21 equivolume layers and overlaid a ‘median’ laminar profile by computing the205

median intensity values across voxels belonging to each layer separately. Median was chosen over mean206

as it is more resilient to outliers that mostly affect tissue boundaries.207

2.4 AHEAD volumetric cortical parametrization208

The tissue segmentation (Figure 2, B (ii)) is also used to define a 3D geodesic coordinate system for209

each cortical region of interest. This parametrization is needed to run our novel geodesic filters (see210

Tears filter and Bias Field filter described in AHEAD laminar signal extraction paragraph) for extracting211

laminar finescale details in AHEAD data. We obtained the first two sets of geodesic coordinates (U,V212

coordinates) for the gray matter of ROI separately, by running LN2 MULTILATERATE (input: segmentation213

file). The third coordinate (coordinate D), parametrizing the cortical depth dimension, was computed by214

running LN2 LAYERS -equivol for each slice of each ROI (input: segmentation file). While we ran the first215

program using the ROI segmentation computed on the 3D reconstructed model (see ‘ROI definition and216

cortical segmentation’ paragraph), the second program was run iteratively for each 2D slice using the final217

segmentation refined for each slice. In order to preserve the two-dimensional nature of our data, we run218

our filters on each slice separately by only using 2 instead of 3 coordinates, by setting one of the two (U,V)219

coordinates to a constant value (e.g. V=1). For an extensive explanation on how the coordinates are220

computed, see Gulban et al., 2022. Although this approach for a volumetric parametrization of the cortex221

has been previously used in some recent layer-fMRI papers to investigate mesoscopic spatial features222

(Dresbach et al., 2024a, 2024b; Pizzuti et al., 2023, 2024), we extended it to microscopy data for the223

first time.224
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2.5 AHEAD laminar signal extraction225

We selected one specimen from AHEAD dataset (ID: 122017) for the highest signal and reduced artifacts226

in the occipital part of the brain. This specimen had already been reconstructed and aligned with the227

respective qMRI data at nominal resolution of 0.15 x 0.15 x 0.2 mm by original authors (Alkemade et al.,228

2022). For the microscopy part of the dataset, we applied three intensity normalization steps in order229

to enhance fine scale details and remove residual acquisition artifacts within the cortical landscape in230

the 2D microscopy slices. First, we performed a slice-by-slice intensity normalization based on percentile231

computation: for each voxel, we subtract the 5th percentile and divide by the difference between 95th232

and 5th percentile (Supplementary Figure 1). In this way, the intensity range is uniform across slices233

and it is normalized between 0-1. Second, we ran a geodesic low-pass filter with cylindrical kernel (radius:234

0.5 and height: 10% of the local cortical depth measurement) by using LN2 UVD FILTER -median within235

Laynii for removing high-frequency artifacts (e.g. tears, cracks), that we called ‘Tears Filter’. Figure236

3 shows three examples of how the filter mitigates the presence of the artifacts, which are irreversible237

distortions in the histology field that are induced by cutting, mounting and staining (Fischl and Sereno,238

2018, Chapter 4). Finally, we estimated local field bias around each voxel by using the same LayNii239

program (LN2 UVD FILTER -median) but with a cylindrical kernel with a larger volume (radius: 0.5 and240

height: 100% of local cortical depth) and mitigated its effect by dividing the voxel intensity by this241

estimated field. Lastly, we introduced a new filter ‘Cutting Angle Filter’ for automatically detecting pieces242

of the gray matter to exclude from our successive laminar analysis that didn’t align well with the coronal243

cutting place (Figure 4). This misalignment is due to the fact that the angle of sectioning relative to244

the local tissue orientation crucially affects the resulting shape of the lamination pattern. To compare245

various brain areas, cutting sections had to have a consistent orientation relative to the cortical surface.246

An angle of 90° is considered optimal to extract cross-section information. Already in the early twentieth247

century, Von Economo and Koskinas were aware of this problem and conducted their seminal staining248

work by dissecting each gyrus and sulcus perpendicularly to its axis (Fischl and Sereno, 2018, Chapter249

2). Following the same rationale, we developed the ‘Cutting Angle Filter’ as an alternative algorithmic250

solution. For our filtering procedure, we computed the local tissue orientation by using LN2 LAYERS251

-streamlines program from LayNii. This program outputs a 4D NIFTI containing a vector map that252

attributes to each voxel a radial vector connecting inner and outer gray matter surfaces (locally orthogonal253

to the two surfaces). Since in this case the 3D geometrical nature of the cortex is used to compute the254

vector map, we input the segmentation computed on the 3D reconstructed model (Figure 4, A). Then,255

we obtained an angular map (scalar) (Figure 4, D) by computing the angle between each voxel’s local256

orientation (Figure 4, B) and the vector along the cutting place (coronal) (Figure 4, C). Finally, we257

excluded each voxel whose angle exceeds 150° (Figure 4, E). According to Schleicher and colleagues258
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Figure 3: Tears filter. (A-B-C) Three exemplary slices spanning the three microscopy contrasts (Bielschowsky, Parvalbumin,
Thionin) showing before and after the application of the tears filter. White arrows pointed to the tears that we aimed to
remove. Square inserts showed the entire slices from which we zoomed in to highlight the artifact.

(Schleicher et al., 1999a), a deviation of a maximum 60° from the vertical (90°) was accepted to not259

alter the laminar pattern. Finally, we quantified the ability of each microscopy contrast (Bielschowsky,260

Thionin, Parvalbumin) to differentiate visual areas by calculating a measure of similarity as the pairwise261

correlation between each laminar profile (see Table 1). We computed a statistical inference (ANOVA262

one way) to assess if the correlations across ROIs are different across the three staining contrasts. This263

was followed by performing a pairwise comparisons post-hoc Wilcoxon signed-rank test. For the qMRI264

part, the main artifact for the R∗
2 map within AHEAD dataset was the presence of vessel residual artifacts265

that appear as very bright “bubbles” in the data. This is due to the air remaining trapped in the vessels266

when preparing a post-mortem sample for imaging (Fischl and Sereno, 2018, Chapter 4). We used an267

intensity-based histogram matching algorithm from ITK-SNAP segmentation tools to detect and exclude268

affected voxels from further analysis.269

11



LN
2

_L
A

YE
R

S
-s

tr
ea

m
lin

es

A) 3D Segmenta�on

WM GM CSF

1mm

B) Streamlines (Vectors)

Component X

1-1

C) Cu�ng Plane

3D Gray Ma�er Surface

Coronal slices

D) Angular Map

[deg]
30° 150°

E) Angular Mask

α > 150° = 0
α < 30° = 0 

C
o

m
p

u
te

an
gl

es

Th
re

sh
o

ld

Component Y Component Z

Figure 4: Cutting angle filter steps. A) The 3D segmentation file is used as input for computing the streamlines using the
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2.6 In-vivo MRI and fMRI laminar signal extraction270

In order to preserve the fine scale details of our high-resolution 3D ME EPI anatomical images from271

processing resampling steps, we firstly upsampled each run to double resolution (0.175 iso. mm), as272

previously done by (Gulban, 2024). We used the -upsample function from the greedy package with273

nearest-neighbor interpolation (Yushkevich et al., 2006). For each run separately, we computed the274

average of the three echos and used them as reference to bring the runs to the same space by using the275

linear and the non linear registration program from greedy. The transformation matrix was then applied276

to each echo separately. Again, nearest neighbor was used as an interpolation step. Finally, we averaged277

the four runs and fitted a monoexponential decay function to compute the quantitative R∗
2 map. The278

anatomical images with UNI contrast at 0.35 iso. mm resolution, resulting from slab-stitching procedure,279

underwent the following processing steps: first, we applied a structure tensor denoising algorithm (Gulban280

et al., 2018) to increase the SNR (Gulban, 2024). Then, we upsampled to 0.175 iso. mm (as done for281

ME 3D EPI data) and we registered to the ME 3D EPI space using a non-linear co-registration procedure282

as implemented in greedy. Finally, we resampled our data using linear interpolation and used the resulting283

output as input to define cortical surfaces, ROIs and tissue segmentations. Resting-state fMRI (rs-fMRI)284

data at 0.8 iso. mm underwent the following preprocessing steps: slice time correction (BrainVoyager),285

motion correction (BrainVoyager), distortion correction (FSL TOPUP), high-pass filter with 3 cycles286

(BrainVoyager). We averaged the time series and upsampled to 0.175 iso. mm to match anatomical287

resolution using the ndimage.zoom command from scipy (Virtanen et al., 2020) with spline interpolation288

(order 3). We coregister rs-fMRI data to high-resolution T ∗
2 anatomical images (ME 3D EPI space) using289

a non-linear registration algorithm as implemented in greedy with linear interpolation.290

2.7 Estimation of scaling factor between post-mortem and in vivo R∗
2 laminar291

profiles292

To evaluate the relative contribution of microstructure and vasculature in the resulting R∗
2, as the signal293

shifts from being influenced solely by microscopic factors (post-mortem) to a combination of microscopic294

and vascular contributions (in-vivo), we estimated a scaling factor between quantitative R∗
2 laminar profiles295

between the two datasets. While brain fixation has been shown to significantly affect the R1 range (Dinse296

et al., 2015), its impact on R∗
2 is considered minimal (Deistung et al., 2016). Given the similar R∗

2 ranges297

observed, we attribute the differences between in vivo and post-mortem R∗
2 primarily to variations in298

tissue composition. For each laminar profile (four ROIs, two hemispheres, two datasets), we fit a linear299

regression model. For each ROI, we averaged the slope between the two hemispheres. Then, we divided300
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the slope fitted on the post-mortem by the slope fitted on the in-vivo data. This ratio estimates the301

scaling factor of the R∗
2 laminar profiles between the two modalities.302

3 Results303

3.1 Comparing the microscopic cortical architecture of visual areas304

We report the lamination patterns of four visual areas, V1, V2, V3, and hMT+, using three microscopy con-305

trasts: Bielschowsky, Thionin, and Parvalbumin (Figure 5 and Supplementary Figure 3). Bielschowsky306

staining correlates with fiber density and indirectly with myelin, while Thionin and Parvalbumin provide307

cellular information by staining neuronal cell bodies and a subset of inhibitory interneurons, respectively.308

This analysis enables us to characterize each ROI by comparing the expression of these three microscopic309

features across cortical depths. We quantified the ability of each microscopy contrast to differentiate310

visual areas by calculating a measure of similarity (indexed as the pairwise correlation between each311

laminar profile (Table 1). Parvalbumin exhibited the lowest level of similarity across regions compared to312

Bielschowsky and Thionin, which was also qualitatively visible when comparing laminar profiles (Figure 5313

and Supplementary Figure 3). To support our comparisons, we tested if the correlations across the314

three groups are different: a one way ANOVA shows significant differences across groups (F = 9.03, p =315

0.0007). A pairwise comparisons using post-hoc Wilcoxon signed-rank test revealed significant difference316

(after Bonferroni correction) between Parvalbumin and Bielschowsky (p = 0.002) and Parvalbumin and317

Thionin (p = 0.02) and not significant between Bielschowsky and Thionin (p = 0.1). Unlike cellular318

neuronal density, the distribution of Parvalbumin neurons varies characteristically across cortical depths319

and ROIs. The different distribution of parvalbumin neurons across layers may suggest a differential320

contribution to inhibitory processing with a maximum for intermediate layers.321

14



AHEAD microscopy - Laminar profiles 

V1 V2 V3 hMT+

B
ie

ls
ch

o
w

sk
y

V
o

xe
l i

n
te

n
si

ty

0.6

1.4

1

10

102

0.6

1.4

1

10

102

0.6

1.4

1

10

102

0.6

1.4

1

10

102

N
u

m
b

e
r o

f vo
xe

ls
Th

io
n

in

V
o

xe
l i

n
te

n
si

ty

0.6

1.4

1

10

102

0.6

1.4

1

10

102

0.6

1.4

1

10

102

0.6

1.4

1

10

102

0.6

1.4

N
u

m
b

e
r o

f vo
xe

ls

V
o

xe
l i

n
te

n
si

ty

1

10

102

0.6

1.4

CSFWM depth
1

10

102

0.6

1.4

CSFWM depth
1

10

102

0.6

1.4

CSFWM depth

Pa
rv

al
b

u
m

in

1

10

102

0.6

1.4

CSFWM depth

N
u

m
b

e
r o

f vo
xe

ls

Figure 5: AHEAD laminar profiles for three microscopy contrasts (Bieloschowsky, Thionin, Parvalbumin) are shown as
2D histograms for each ROI of the left hemisphere. Gray matter cortical depth measure is shown from white matter (x=0)
to cerebro-spinal fluid (x=1) boundary from left to right. Solid white lines in each subplot show median intensity for 21
discrete equivolume layers. The Y-axis is shown within the 0.5-1.4 (a.u.) range for each subplot. Results from the right
hemisphere are shown in Supplementary Figure 3.
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Table 1: Similarity of laminar profiles (rho). Correlations are computed to quantify similarity across laminar profiles
between each ROI (V1, V2, V3, hMT+) for each microscopy contrast. Low correlation values indicate high dissimilarity
between laminar profiles of different regions. Significant differences are found between Parvalbumin and Bieloschowsky and
Parvalbumin and Thionin and are highlighted by a red asterisk (p 0.01).
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3.2 Comparing post-mortem and in-vivo quantitative R∗
2 laminar profiles322

Bridging the gap between post-mortem and in-vivo studies is crucial for understanding the sources of R∗
2,323

as it is assumed that the signal shifts from being influenced solely by microscopic factors (post-mortem) to324

a combination of microscopic and vascular contributions (in-vivo). Therefore, in this study, we report the325

quantitative R∗
2 values across cortical depths for both post-mortem and in-vivo datasets (Figure 6 and326

Supplementary Figure 4). Table 2 accompanies Figure 6 and Supplementary Figure 4 by reporting327

the average R∗
2 value in only three equivolume layers. First, our R∗

2 cortical layer profiles matches with328

the previously reported R∗
2 values within the visual cortex (Gulban et al., 2022). Second, we also observe329

overall matching profiles between the AHEAD and in-vivo data that shows a consistent decrease of R∗
2330

values from deep to the superficial layers. When comparing the magnitude of the R∗
2 laminar profiles331

between post-mortem and in-vivo data, we show that the AHEAD R∗
2 values are lower compared to those332

measured in vivo. In addition, the discrepancy between the R∗
2 values seem to be the highest in superficial333

layers. This discrepancy is expected, as in-vivo R∗
2 values include the additional contribution from blood334

vessels, leading to a faster signal decay. In contrast, post-mortem R∗
2 is influenced only by iron and myelin335

content, since the brain fixation process removes most of the blood, resulting in a slower decay. These336

differences are most pronounced from the middle to the superficial layers, which is expected due to the337

presence of more vasculature and partly by pial veins (partial volume effect). We estimate an average338

scaling factor across our visual ROIs between post-mortem and in-vivo of 2.8 (Table 3). This means339

that, the blood affects the estimation of R∗
2 with a factor of three: the slope of the R∗

2 laminar profiles in340

vivo are almost three times smaller compared to the one measured when microstructure only is considered341

(post-mortem).342

Table 2: Mean quantitative R∗
2 [Hz] reported for three equivolume layers (deep, middle, superficial) for all the regions of

interest in both post-mortem and in-vivo data.
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Figure 6: AHEAD (top) and in-vivo (bottom) qR∗
2 laminar profiles are shown as 2D histograms for each ROI for the left

hemisphere. Gray matter cortical depth measure is shown from white matter (x=0) to cerebro-spinal fluid (x=1) boundary
from left to right. Solid white lines in each subplot show median intensity for 21 discrete equivolume layers. The Y-axis is
shown within the 10-50 (s-1) range for each subplot. Results from the right hemisphere are shown in Supplementary
Figure 4.

Table 3: Regression modeling for R∗
2 laminar profiles. The slope of the fitted curve is reported for each

ROI. The ratio is considered as an estimate of the scaling factor between the two modalities.
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Figure 7: Structure-to-function comparison. Resting-state fMRI (top), in-vivo T ∗
2 (middle) and post-mortem AHEAD

T ∗
2 (bottom) laminar profiles are shown as 2D histograms for each ROI. Gray matter cortical depth measure is shown from

white matter (x=0) to cerebro-spinal fluid (x=1) boundary from left to right. Solid white lines in each subplot show median
intensity for 21 discrete equivolume layers. Dotted lines indicate horizontal lines to highlight the increase towards superficial
layers of main curves. The Y-axis range is displayed only in the first subplot of each data type and kept invariant across
ROIs. Results from the right hemisphere are shown in Supplementary Figure 5.

3.3 Comparing structure to function: anatomical T ∗
2 and resting state fMRI343

Since GE-BOLD fMRI signals reflect variations of T ∗
2 between conditions, we analyzed both anatomical344

and functional signal as T ∗
2 variation (1/R∗

2). Here, our goal is to report the laminar profiles from the345

rs-fMRI run and to compare it to the anatomical T ∗
2 laminar profiles from both in-vivo and post-mortem346

AHEAD dataset (Figure 7 and Supplementary Figure 5). In all ROIs, the rs-fMRI signal exhibits347

a general increase towards the cortical surface, similar to the anatomical profiles in the two datasets.348

Although at half of the spatial resolution (0.8 iso. mm), the same overall characteristic positive slope349

laminar feature we observed in the anatomical T ∗
2 is also present within the rs-fMRI data. However,350

finer details observable in the anatomical laminar profiles, such as the characteristic dip in T ∗
2 , remain351

concealed in the current resting state laminar profiles due to the varying spatial scales. Future fMRI352

studies employing higher spatial resolution may uncover these details (Feinberg et al., 2023).353
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4 Discussion354

4.1 Summary355

In this study, we propose a multimodal laminar characterization for four human visual areas (V1, V2, V3,356

hMT+) that aims to bridge the micro and mesoscale. We used the novel publicly available post-mortem357

AHEAD dataset, which uniquely presents multiple microscopy contrasts and quantitative MRI for the358

same individual, and complement it with our in-vivo dataset consisting of both high-resolution anatomical359

and functional MRI (Figure 1). We investigated the microscopic underpinning of our regions of interests360

by analyzing the cortical variation of three microscopy contrasts (Bielschowsky, Thionin, Parvalbumin)361

and found a central role for Parvalbumin for area differentiation (Figure 5, Supplementary Figure362

3). Moreover, we compared R∗
2 MRI cortical variation of post-mortem to in vivo samples, and found a363

common linear decrease R∗
2 across the two modalities (Figure 6, Supplementary Figure 4). Finally,364

we report the laminar profiles in rs-fMRI (Figure 7, Supplementary Figure 5) and compare it with365

the structural laminar profiles measured in the same living brain and in post-mortem brain. Although at366

different spatial resolution, the same overall characteristic positive slope characterized the three laminar367

profiles.368

4.2 Implications for layer-fMRI369

Cortical distribution of Parvalbumin interneurons. It is generally assumed that the neural activity370

of excitatory neurons is reflected in BOLD fMRI response, since excitatory neurons constitute 80-90%371

of all cortical neurons (Meyer et al., 2011). However, it is known that the ratio between excitatory and372

inhibitory neurons varies across cortical depth and areas (Markram et al., 2004; Tremblay et al., 2016).373

Even though our microscopy data cannot quantify the ratio of excitatory and inhibitory neurons, we374

still found it notable that the cortical distribution of Parvalbumin neurons is a characteristic feature of375

the region of interest (Figure 5). Parvalbumin neurons, even if they represent only one category of376

interneurons, they are the most abundant GABAergic neurons in the cortex (Rudy et al., 2011) and are377

assumed to have indirect influence through the inhibition of pyramidal cells, resulting in vasoconstriction378

(Lee et al., 2021). Due to this property, neural mechanisms involving this category of interneurons can379

affect the hemodynamic response detected by fMRI (Moon et al., 2021). In particular, when submillimeter380

resolution is available for layer-fMRI studies, unveiling the cortical distribution of parvalbumin interneurons381

can be crucial to interpret the laminar results when an inhibitory circuit is hypothesized to be recruited382

for solving functional tasks. For instance, (Torres-Gomez et al., 2020) suggested that changes in the383
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proportion of parvalbumin neurons in layers 2/3 cells may favor the emergence of activity encoding working384

memory in association areas in primate brains. We expect that integrating a proxy for microstructural385

neural information in humans will improve the interpretation of laminar functional response in resolving386

complex tasks.387

Vascular vs microstructural gray matter composition. When reaching submillimeter spatial resolution388

in fMRI, signals from different cortical laminae can be disentangled. However, at this spatial scale also389

other mesoscopic details regarding the underlying vascular network have to be considered while discussing390

layer-fMRI results. In particular, the BOLD signal reflects variation of T ∗
2 mainly coming from veins391

(Koopmans and Yacoub, 2019; Uludag and Havlicek, 2021). The presence of pial veins together with392

intracortical veins usually induces a bias known as ‘draining vein’ effect that is manifested as a signal393

that linearly increases towards the cortical surface. This is due to the fact that the blood is drained394

from deep to superficial layers by the veins that accumulate signals while traveling upwards, making395

the identification of the neural laminar source challenging (Koopmans and Yacoub, 2019). This cortical396

trend has been reported for both task-induced (Aitken et al., 2020; Fracasso et al., 2018; Mourik et al.,397

2021) and resting-state activity (Guidi et al., 2020; Markuerkiaga et al., 2021; Pais-Roldán et al., 2020).398

In this study, we showed that a linear trend characterizes the gray matter structure both in-vivo and399

post-mortem qT ∗
2 laminar profiles (Figure 7). When the vasculature is taken out of the equation, as in400

the post-mortem case, T ∗
2 is still the highest at superficial layers. This result suggests that microstructural401

properties (e.g. myelin, iron) contribute to the linear increase in addition to vasculature in both task and402

resting state fMRI. Given that regional differences in the relative contributions of microstructure and403

vasculature are likely, understanding how these elements might consistently or differentially shape T ∗
2404

profiles across brain regions could enhance our interpretation of laminar fMRI. A scenario where both405

factors together produce a consistent linear increase across the cortex would align with prior observations,406

underscoring the importance of further investigation. Extending generative laminar models to embed407

area-specific microstructural and vascular features (such as R∗
2 laminar profile) might complement and408

improve our understanding of the sources of variance driving layer-fMRI (Havlicek and Uludağ, 2020;409

Markuerkiaga et al., 2016).410

Consequences for models of layer fMRI. Generative laminar models are useful tools to predict layer411

fMRI dynamics. However, the complexity and the accuracy of those models depends on the assumptions412

and on the physical parameters estimates (Havlicek and Uludağ, 2020; Markuerkiaga et al., 2016; Uludaǧ413

et al., 2009). Below, we discuss our resting-state laminar profiles together with the generative laminar414

model from (Havlicek and Uludağ, 2020). The model uses two compartments (intravascular (blood)415

and extravascular (parenchyma)) to describe the BOLD signal generated by a GE sequence (Eq. 1,416

Appendix). T1 effects are neglected in this model. As the signal from the intravascular compartment417
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can be neglected at 7T (due to R∗
2), the predicted laminar profile depends only on the extravascular418

compartment. According to this modeling, the variables affecting the signal are:419

1. S0 or rho, baseline signal intensity measured at TE=t(0), when no relaxation (particularly T ∗
2420

relaxation) has taken place. This signal measures the water proton density in the tissue.421

2. CBV, cerebral blood volume, measuring the fraction of cerebral blood volume within a given amount422

of brain tissue.423

3. R∗
2, the transverse relaxation rate, which reflects how quickly the MRI signal decays in a gradient-echo424

sequence.425

Conventionally, it is assumed that both S0 and R∗
2 are constant across cortical layers and only CBV426

is expected to increase from deep to superficial layers (see Table 2, from Havlicek and Uludağ, 2020).427

Under this set of assumptions, the equation predicts a signal decreasing from deep to superficial layers428

(see Appendix - Laminar resting state fMRI). However, our empirical laminar resting-state fMRI profile429

shows the opposite trend (Figure 7, Supplementary Figure 5) with respect to the prediction. A similar430

trend to our results was also reported in previous works (Guidi et al., 2020; Markuerkiaga et al., 2016;431

Pais-Roldán et al., 2020). This discordance between modeling and empirical data points to the obvious432

conclusion that some of the above assumptions have to be relaxed in order to counterbalance the effect433

of CVB. In this work, we focus on quantitative R∗
2 and consistently show in both post-mortem and in-vivo434

R∗
2 is clearly modulated (and not constant) with respect to cortical depth. The laminar variation of R∗

2435

with its characteristic decrease from deep to superficial layers is one factor that counterbalances the effect436

of CBV: as R∗
2 decreases with cortical depth, the T ∗

2 weighted rs-fMRI signal increases with cortical depth.437

Together with R∗
2, it is plausible to think that S0 also changes across cortical depth as a concurrent438

contribution to the resulting laminar profile measured during a rest condition. Empirical data, such as439

our observed laminar profiles, are invaluable in challenging and refining these models, offering insights440

that purely theoretical approaches may overlook. A full suite of modeling simulations is necessary to441

systematically explore the combined effects of both R∗
2 and S0 on the laminar profile. This approach can442

help resolve the observed divergence between current modeling predictions and empirical findings. By443

adjusting these parameters within the model, future work may better capture the nuanced interactions that444

shape the laminar BOLD signal across cortical depth, ultimately leading to more accurate representations445

of layer fMRI dynamics.446
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4.3 Extending open access tools for the AHEAD dataset447

Publicly available post-mortem datasets are invaluable for studying the microscopic structure of the448

human brain (Alkemade et al., 2022; Amunts et al., 2013). However, developing specialized analysis449

toolboxes is also essential for correctly extracting information from these rare datasets and integrating it450

with other modalities. For instance, the Allen Brain Map portal (https://portal.brain-map.org/overview)451

is complemented by a suite of publicly available analysis tools (https://github.com/AllenInstitute).452

Following the same rationale, our streamlined analysis pipeline released as an open github repository453

(https://github.com/27-apizzuti/multimodal layers.git), extends the open access analysis tools for the454

AHEAD dataset provided by Alkemade and colleagues, offering new tools for extracting laminar information.455

To enhance the laminar details and ensure robust cortical sampling from multiple slices, we developed456

the ‘cortical tears filter’ (Figure 3) and the ‘cutting angle filter’ (Figure 4). These tools are crucial457

for deriving reliable contrast- and ROI-specific laminar information. While we acknowledge the existence458

of other softwares addressing similar artifacts (Kindle et al., 2011; Mancini et al., 2020; Schleicher459

et al., 1999b), we highlight that our implementation is designed to encourage widespread use of AHEAD460

dataset specifically by offering tools that can be applied on the downloaded data. Note that the tissue461

segmentation step is not fully automated and requires expertise and manual work. This is a crucial step462

for accurate and precise layer profiles when working with very high resolution images. With all analysis463

methods and data used in this paper (histology, qMRI, and layer-fMRI) being publicly accessible, our464

framework offers a valuable resource for researchers conducting similar studies in other brain regions.465

By facilitating the study of cortical laminar structure and integrating this with functional information,466

our approach supports a deeper understanding of the structure-function relationships across the cortex,467

potentially uncovering unique regional patterns that contribute to brain function and disease.468

4.4 Limitations and conclusions469

Although our efforts to bridge scales and techniques have led to new insights and discussions on the470

laminar organization of four visual areas, it is worth pointing out the limitations of our results. Firstly,471

we focused on a limited subset of visual regions (V1, V2, V3, hMT+), which restricts the scope of472

our findings from drawing widespread conclusions on laminar features and visual hierarchy. Secondly,473

we defined the ROIs for V1, V2, and V3 using the visfatlas (Rosenke et al., 2021) with cortex-based474

alignment, and hMT+ was delineated based on macro-anatomical criteria outlined in (Huang et al., 2019).475

While we acknowledge that different methodologies can lead to partially overlapping regional boundaries476

(Turner, 2019 and Fischl and Sereno, 2018, Chapter 7), we argue that these discrepancies are unlikely to477
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impact our results as we aim to understand regional and not local lamination differences. Additionally,478

comparing post-mortem and in vivo tissue introduces limitations due to the effects of brain extraction479

and fixation. These effects could influence the R∗
2 measurements (Deistung et al., 2016) and may alter480

the apparent thickness of cortical layers due to slight tissue shrinkage during fixation (Mouritzen Dam A.,481

1979). Finally, the small sample size, relying on data from only one post-mortem and one in vivo brain,482

limits the generalizability of our findings to broader populations, as individual anatomical variations may483

not be fully represented. However, the fundamental structural features observed in this study are likely484

to be consistent across human brains, supporting the broader relevance of our findings. Therefore, it is485

critical that similar post mortem and in vivo high resolution imaging efforts continue in the future where486

the amount of publicly available datasets increase. We conclude that our study represents a step forward487

along the goal of studying structure to function coupling mechanisms. Our results on regional laminar488

differences observed using multi-modal and multi-contrast data opens up new discussions on interpretation489

of layer-fMRI data. Future research could focus on expanding the multimodal characterization to include490

additional visual areas and functional contexts, enhancing our understanding of the dynamic interplay491

between micro- and mesoscale features in visual processing.492

5 Appendix493

Laminar resting state fMRI494

The laminar BOLD signal equation (Eq. 5 from Havlicek and Uludağ, 2020) for a cortical layer (denoted495

by subscript k) for a baseline condition (denoted by subscript 0) is given as:496

S0,k =

(
1−

∑
i

V0i,k

)
S0,Ek +

∑
i

V0i,kS0,Ik (1)

where:497

1. V0i,k is the cerebral blood volume (CBV) from the vascular compartment (denoted by subscript i)498

at baseline for the k-layer.499

2. The vascular compartment include the venules and ascending veins compartments.500

3. S0,Ik is the intravascular signal at baseline for the k-layer.501

Laminar resting state fMRI502
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Under the approximation that, at 7T, R∗
2 of the blood (intravascular) is twice as fast as R∗

2 of the503

parenchyma, we can assume that Srest0,Ik = 0 Havlicek and Uludağ, 2020.504

Thus, we can write:505

Srest0,k =

(
1−

∑
i

V0i,k

)
Srest0,Ek (1)

Since the parenchyma R∗
2 (extravascular) is assumed to be constant across cortical depth, we approximate506

Srest0,Ek to be constant as well across cortical depth (Havlicek and Uludağ, 2020).507

Srest0,k ≈

(
1−

∑
i

V0i,k

)
(2)

As CBV0 is expected to linearly increase across cortical depth (Havlicek and Uludağ, 2020), the resulting508

signal at resting state is expected to decrease as a function of cortical depth.509

6 Data and Software availability statement510

Analysis code is available on GitHub: https://github.com/27-apizzuti/multimodal layers.git. Please refer511
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Keuken, M. C., Bleys, R. L., Swaab, D. F., Herrler, A., Weiskopf, N., & Forstmann, B. U. (2022).548

A unified 3D map of microscopic architecture and MRI of the human brain. Science Advances,549

8(17), 1–10. https://doi.org/10.1126/sciadv.abj7892550

26

https://doi.org/10.1371/journal.pbio.3001023
https://doi.org/10.1126/sciadv.abj7892


Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M. É., Bludau, S., Bazin,551
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D., Marrett, S., Guidi, M., Goense, J., Poser, B. A., & Bandettini, P. A. (2017). High-Resolution621

CBV-fMRI Allows Mapping of Laminar Activity and Connectivity of Cortical Input and Output in622

Human M1. Neuron, 96(6), 1253–1263. https://doi.org/10.1016/j.neuron.2017.11.005623

Huber, L., Poser, B. A., Bandettini, P. A., Arora, K., Wagstyl, K., Cho, S., Goense, J., Nothnagel, N.,624

Morgan, A. T., van den Hurk, J., Müller, A. K., Reynolds, R. C., Glen, D. R., Goebel, R., &625

Gulban, O. F. (2021). LayNii: A software suite for layer-fMRI. NeuroImage, 237(May), 118091.626

https://doi.org/10.1016/j.neuroimage.2021.118091627

Jonkman, L. E., Graaf, Y. G. d., Bulk, M., Kaaij, E., Pouwels, P. J., Barkhof, F., Rozemuller, A. J., van der628

Weerd, L., Geurts, J. J., & van de Berg, W. D. (2019). Normal Aging Brain Collection Amsterdam629

(NABCA): A comprehensive collection of postmortem high-field imaging, neuropathological and630

morphometric datasets of non-neurological controls. NeuroImage: Clinical, 22(September 2018),631

101698. https://doi.org/10.1016/j.nicl.2019.101698632

Kindle, L. M., Kakadiaris, I. A., Ju, T., & Carson, J. P. (2011). A semiautomated approach for artefact633

removal in serial tissue cryosections. Journal of Microscopy, 241(2), 200–206. https://doi.org/10.634

1111/j.1365-2818.2010.03424.x635

Koopmans, P. J., & Yacoub, E. (2019). Strategies and prospects for cortical depth dependent T2 and636

T2* weighted BOLD fMRI studies. NeuroImage, 197(March), 668–676. https://doi.org/10.1016/637

j.neuroimage.2019.03.024638

Lee, J., Stile, C. L., Bice, A. R., Rosenthal, Z. P., Yan, P., Snyder, A. Z., Lee, J. M., & Bauer, A. Q.639

(2021). Opposed hemodynamic responses following increased excitation and parvalbumin-based640

inhibition. Journal of Cerebral Blood Flow and Metabolism, 41(4), 841–856. https://doi.org/10.641

1177/0271678X20930831642
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Supplementary Figure 1: Slice-based percentile intensity normalization. Comparing AHEAD stack microscopy data
(sagittal view) before and after this step. The intensity of each slice is normalized between 0-1.
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Supplementary Figure 2: Extended ROI definition for both AHEAD and In-vivo datasets. Results from cortex-based
alignment to the visual functional atlas (Rosenke et al. 2021) are shown on a white matter surface for both the left (A)
and the right (B) hemisphere. Results from the macro-anatomical definition of hMT+ as explained in Huang et al. 2019
are shown on the inflated white matter surface for both the left (C) and the right (D) hemisphere. Surface area is reported
for each hMT+ ROIs.
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AHEAD microscopy - Laminar profiles 
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Supplementary Figure 3: AHEAD laminar profiles for three microscopy contrasts (Bieloschowsky, Thionin,
Parvalbumin) are shown as 2D histograms for each ROI of the right hemisphere. Gray matter cortical depth measure is
shown from white matter (x=0) to cerebro-spinal fluid (x=1) boundary from left to right. Solid white lines in each subplot
show median intensity for 21 discrete equivolume layers. The Y-axis is shown within the 0.5-1.4 (a.u.) range for each
subplot. Results from the left hemisphere are shown in main Figure 5.
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AHEAD microscopy - Laminar profiles 
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Supplementary Figure 4: AHEAD (top) and in-vivo (bottom) qR∗
2 laminar profiles are shown as 2D histograms for

each ROI for the right hemisphere. Gray matter cortical depth measure is shown from white matter (x=0) to cerebro-spinal
fluid (x=1) boundary from left to right. Solid white lines in each subplot show median intensity for 21 discrete equivolume
layers. The Y-axis is shown within the 10-50 (s-1) range for each subplot. Results from the left hemisphere are shown in
main Figure 6.
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Supplementary Figure 5: Structure-to-function comparison. Resting-state fMRI (top), in-vivo T ∗
2 (middle) and

post-mortem AHEAD T ∗
2 (bottom) laminar profiles are shown as 2D histograms for each ROI for the right hemisphere.

Gray matter cortical depth measure is shown from white matter (x=0) to cerebro-spinal fluid (x=1) boundary from left
to right. Solid white lines in each subplot show median intensity for 21 discrete equivolume layers. Dotted lines indicate
horizontal lines to highlight the increase towards superficial layers of main curves. The Y-axis range is displayed only in the
first subplot of each data type and kept invariant across ROIs. Results from the left hemisphere are shown in main Figure 7.
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