
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 11 | Nov - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM38905 | Page 1

Design and Implementation of a 3-bit ALU with Integrated 7-Segment

Display on FPGA

A Hemanth Kumar1

1Dept of E.C.E, NIELIT Calicut, Kerala.

Abstract: This paper describes the design and

implementation of a 3-bit Arithmetic Logic Unit

(ALU) with integrated 7-segment display output,

deployed on an FPGA platform. The objective of

this project is to efficiently perform and display

basic arithmetic and logic operations, including

addition, subtraction, AND, OR, XOR, and NOT,

with an FPGA-based ALU. A control signal selects

the operation, and the ALU's 3-bit result is decoded

and displayed on a 7-segment interface for clear

output visualization. The ALU design is coded in

Verilog and includes logic to manage carry and

overflow in arithmetic functions. A display decoder

module maps the ALU’s binary output to the

correct LED segments on the 7-segment display,

allowing intuitive real-time readout of operation

results. The system was synthesized, simulated, and

tested on an Artix-7 FPGA using the Xilinx Vivado

development environment, achieving accurate and

expected functionality across all operations. This

work showcases the effectiveness of FPGA

technology in integrating computation and display

within a compact digital system, with potential

applications in both educational and embedded

system design settings where real-time processing

and display are essential.

Keywords: FPGA, ALU, 7-segment display,

Verilog, Digital system design, Embedded

computing.

1. INTRODUCTION: Arithmetic Logic Units

(ALUs) are essential components in digital systems,

responsible for executing key arithmetic and logic

operations that form the basis of processors and

embedded systems. With growing demands for

flexible and efficient digital circuits, FPGAs (Field-

Programmable Gate Arrays) are increasingly favoured

for ALU implementations due to their high-speed

processing, reconfigurability, and seamless integration

potential. This paper details the design and

implementation of a 3-bit ALU, capable of performing

addition, subtraction, AND, OR, XOR, and NOT

operations, with real-time results displayed on an

integrated 7-segment display. Designed in Verilog and

deployed on an Artix-7 FPGA using Xilinx Vivado,

this ALU leverages FPGA’s dual capability for both

computation and immediate output visualization. The

system provides valuable insights into FPGA utility

for compact, efficient digital modules, demonstrating

applicability in educational settings and embedded

systems that require real-time operational verification.

This implementation serves as a practical reference for

digital design education and offers a robust foundation

for developing real-time processing units in resource-

sensitive applications.

2. LITERATURE SURVEY: The design and

implementation of a 3-bit ALU with an integrated 7-

segment display on FPGA is a well-established area of

research with practical applications in both academic

and industrial settings. ALUs are essential

components in digital systems, and FPGA platforms

offer the flexibility to implement and customize these

designs efficiently. The integration of a 7-segment

display enhances user interaction, providing an

intuitive method for displaying results. Research by

Ranjani and Krishnaiah (2014) on ALU design and

Roush and Burns (2005) on display integration

provides crucial insights into the design principles,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 11 | Nov - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM38905 | Page 2

implementation techniques, and challenges of these

systems.

These base papers form the foundation for the

development of efficient and scalable ALU designs

that can be seamlessly integrated with display systems

for practical applications. The combination of FPGA

implementation, ALU functionality, and display

integration has significant potential for educational

tools, embedded systems, and real-time computational

applications.

3. DESIGN SYSTEM:

3.1. Design of Top Level (RTL) Verilog Module of

3-Bit Arithmetic Logical UNIT (ALU):

High-level design methodologies help manage

complexity and reduce the design cycle. These models

simplify the description and evaluation of complex

systems, making the design process faster and more

efficient. In RTL (Register Transfer Level) design, all

registers and the combinational logic between them

are specified clearly. Registers can be described either

explicitly or implicitly, while the combinational logic

is defined through logical equations or Verilog

statements.

Key benefits:

• Managing Complexity: Fewer lines of code

reduce error and improve productivity.

• Increased Design Reuse: Modular

components can be reused across different

designs, saving time and effort.

• Improved Verification: Faster simulations

help identify issues more quickly, ensuring

more reliable designs.

.

Fig.3.1. Block Diagram of ALU

3.2. Functioning Of ALU:

A 3-bit ALU performs operations by dividing its

functionality into two main units: the Arithmetic Unit

and the Logic Unit. The Arithmetic Unit handles

computations like addition, subtraction,

multiplication, division, increment, and decrement,

producing a 3-bit result (`y`) along with carry-out

(`cout`) and status flags (`s`) for overflow or divide-

by-zero conditions. The Logic Unit manages bitwise

operations such as AND, OR, XOR, NOT, as well as

rotate left, rotate right, left shift, and right shift

operations. The operation to execute is determined by

a 4-bit control signal (`opcode`), which selects

between the Arithmetic Unit and Logic Unit. The

output of each operation is a 3-bit result, with

additional flags indicating specific conditions. The

ALU is designed for flexibility and efficiency in

executing both computational and logical tasks. It uses

a well-structured control mechanism to perform a wide

variety of operations within a single unit. This makes

it suitable for modern digital systems where

compactness and versatility are critical. The clear

separation of arithmetic and logical functions also

simplifies the design and debugging process.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 11 | Nov - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM38905 | Page 3

 Fig. 3.2. Operation Table of ALU

3.3.

Block Diagram of ALU:

1. Inputs:

 - `p` (3 bits): First operand.

 - `q` (3 bits): Second operand.

 - `opcode` (4 bits): Operation control signal to select

between Arithmetic and Logic Unit operations.

2. Arithmetic Unit:

 - Inputs: Receives `p`, `q`, and part of the

`opcode`.

 - Operations: Addition, Subtraction,

Multiplication, Division, Increment, Decrement.

 - Output: Result (`y`), Carry-out (`cout`), Status

flag (`s` for overflow or errors).

3. Logic Unit:

 - Inputs: Receives `p`, `q`, and the remaining part

of the `opcode`.

 - Operations: AND, OR, XOR, NOT, Rotate Left,

Rotate Right, Left Shift, Right Shift.

 - Output: Result (`y`), Status flag (`s` for zero or

other conditions).

4. Control Unit:

 - Function: Based on the `opcode`, selects either the

Arithmetic Unit or Logic Unit and directs the

operation. The control unit also manages flags based

on the operation.

5. Output:

 - Result (`y`): The 3-bit result of the selected

operation.

 - Carry-out (`cout`): For arithmetic operations.

 - Status flag (`s`): Indicates overflow, zero result, or

errors like divide-by-zero.

The ALU takes in the two operands `p` and `q` and

uses the 4-bit `opcode` to control the operation

selection. The Arithmetic Unit handles mathematical

operations, while the Logic Unit processes bitwise

logical functions. The output includes the result `y`,

carry-out `cout`, and a status flag `s`.

 Fig.3.3. Design of ALU

4. IMPLEMENTATION OF ALU:

4.1Software Approach:

Step-by-Step Implementation for 3-Bit ALU on Artix-

7 FPGA using Verilog in Xilinx Vivado:

1. Create a New Vivado Project

 - Open Vivado and create a new RTL project.

 - Select Artix-7 FPGA device (e.g., XC7A35T-

1CPG236C).

2. Add Verilog Module for ALU

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 11 | Nov - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM38905 | Page 4

 - Create a new Verilog module (e.g., `ALU_3bit.v`).

 - Define inputs: `A[2:0]`, `B[2:0]`, `sel[2:0]`.

 - Define outputs: `result[2:0]`, `carry`, `zero`.

3. Implement ALU Logic

 - Implement the logic for different operations

(Addition, Subtraction, AND, OR, XOR, Pass-

through) based on the `sel` control signal in the

Verilog file.

4. Create Testbench

 - Create a new testbench file (`tb_ALU_3bit.v`).

 - Instantiate the ALU module.

 - Apply test vectors for various operations.

5. Run Simulation

 - Run “behavioral” simulation in Vivado and

observe the waveform for correctness of ALU

operations.

6. Synthesize Design

 - Click “Run Synthesis” to compile the design.

 - Review the synthesis report and resource

utilization.

7. Implement the Design

 - Run **Implementation** to map the design to the

Artix-7 FPGA.

 - Check timing and placement reports.

8. Generate Bitstream

 - Generate the bitstream file for programming the

FPGA.

9. Program the FPGA

 - Connect the Artix-7 FPGA to your computer.

 - Use Vivado's "Hardware Manager" to load the

bitstream file onto the FPGA.

10. Test the ALU on FPGA

 - Assign inputs (`A`, `B`, `sel`) to switches and

outputs (`result`, ̀ carry`, ̀ zero`) to LEDs or 7-segment

displays.

 - Verify the ALU operations by toggling switches.

 Fig.4.1. Software Approach flow diagram

4.2. Hardware Approach:

1. Create Vivado Project:

 - Create a new RTL project in Vivado.

 - Select Artix-7 FPGA (e.g., XC7A35T).

2. ALU Verilog Module:

 - Define 3-bit inputs (`A`, `B`), 3-bit `sel` control,

and 3-bit `result` output.

 - Implement ALU operations (Addition, Subtraction,

AND, OR, XOR, Pass-through) based on `sel`.

 - Include `carry` and `zero` flags.

3. Pin Assignment:

 - Assign FPGA pins for inputs (switches) and

outputs (LEDs and 7-segment displays) in Vivado IO

Planning.

4. Testbench and Simulation:

 - Create a testbench to verify ALU functionality.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 11 | Nov - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM38905 | Page 5

 - Run simulation to check correctness.

5. Synthesis and Implementation:

 - Run "Synthesis" and "Implementation" in Vivado.

 - Check timing and resource utilization.

6. Generate Bitstream:

 - Generate the "bitstream file" after successful

implementation.

7. Program FPGA:

 - Use Vivado "Hardware Manager" to program the

FPGA with the bitstream.

8. Test on Hardware:

 - Use switches for inputs (`A`, ̀ B`, ̀ sel`) and display

`result`, `carry`, and `zero` on LEDs or 7-segment

displays.

 - Test ALU operations by toggling switches.

4.2.1. Edge Artix-7 Board:

The Artix-7 FPGA is a family of field-programmable

gate arrays (FPGAs) from Xilinx, designed for low-

power and cost-sensitive applications. It is part of the

7 series and offers a good balance of performance,

power efficiency, and cost. The Artix-7 is ideal for

high-performance, low-power applications such as

embedded systems, digital signal processing, and

high-speed logic circuits.

Board Features

• Xilinx XC7A35T-1FTG256 Artix 7 FPGA

• 8MB SPI FLASH Memory

• 32MB SDRAM

• HDMI Out

• On-Board USB JTAG Programmer

• USB to UART Interface

• WIFI Interface

• 8 Channel SPI ADC

• 2×16 LCD Display

• 4 Digit Seven Segment Display

• 5v Buzzer

Fig.4.2.1. Artix-7 Board

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 11 | Nov - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM38905 | Page 6

5. Results and Discussion

5.1. RTL Schematic: The RTL (Register Transfer Level) schematic serves as a blueprint for the architecture,

providing a means to verify the designed architecture against the intended ideal architecture. It helps ensure that the

design meets the required specifications. The HDL (Hardware Description Language), such as Verilog, is used to

convert the architectural description into a functional representation through coding. The RTL schematic also details

the internal connection blocks, allowing for a more thorough analysis of the design. The figure below illustrates the

RTL schematic diagram of the designed architecture

Fig.5.1. RTL Schematic

5.2. Technology Schematic: The technology schematic represents the architecture in the form of Look Up Tables

(LUTs), where the LUT serves as a key parameter for estimating the area used in the VLSI architecture design. In

this context, a LUT is considered a square unit, and the memory allocation of the design code is mapped into these

LUTs within an FPGA. This schematic provides a detailed representation of how the design is implemented at the

technology level, with LUTs playing a crucial role in determining the area and memory usage in the FPGA.

Fig.5.2. Technology Schematic

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 11 | Nov - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM38905 | Page 7

5.3. Simulation: A simulation report documents the results of the simulation process, which serves as the final step

for verifying the functionality of the design. While the schematic focuses on validating the connections and blocks,

the simulation confirms the overall operation of the architecture. The simulation window is accessed by transitioning

from the implementation to the simulation section on the tool's home screen. It displays the output as waveforms and

offers flexibility by supporting multiple radix number systems, allowing the user to analyze and interpret the design's

performance under various numerical formats. The report summarizes these findings, helping to identify any issues

or validate the design’s correctness.

 Fig.5.3.

Simulated

Report

Fig.5.3.1.

Hardware

Verification

Fig.5.3.2. Power Report

In the software implementation of the 3-bit ALU on the Artix-7 FPGA, an example was tested with inputs A = 3'b101

(5), B = 3'b011 (3), and select (sel) = 3'b000, which corresponds to the addition operation. The ALU correctly

performed the addition, resulting in 5 + 3 = 8, which was truncated to 3'b000 (0) due to the 3-bit output. The “Carry”

flag was set to 1 because the result exceeded the 3-bit range, and the “Zero” flag was 0 since the result was not zero.

The result was displayed on the 7-segment display, while the Carry and Zero flags were shown on LEDs. Vivado

simulation confirmed the correct functionality, with the ALU output and flag behaviour matching the expected

results.

6. CONCLUSION: In conclusion, the design and

implementation of the 3-bit Arithmetic Logic Unit

(ALU) on the Artix-7 FPGA demonstrated successful

execution of the intended functionalities. The ALU

accurately performed a range of arithmetic and logical

operations, including addition, subtraction, AND, OR,

and XOR, controlled by the select input. The

computational results were reliably displayed on a 7-

segment display, while the Carry and Zero flags were

appropriately indicated. The design, implemented in

Verilog, was thoroughly validated through simulation

in the Vivado environment, confirming correct

operation and flag behaviours. This project

underscores the capability of FPGA-based designs for

efficient, high-performance digital system

implementation, providing a robust framework for

future expansions and more complex designs.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 11 | Nov - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM38905 | Page 8

7. ACKNOWLEDGMENT: We hereby express our

sincere gratitude to the HOD of Electronics and

Communication Engineering, for providing us

seamless knowledge and support over past one year

and for providing right suggestions at every phase for

successful completion of project. We express our

sincere gratitude to our guide Assoc. Prof. Sreejeesh

SG and Sri Rama Pavan, Department of Electronics

and Communication Engineering, for constant

guidance and for providing required guidance as

internal guide for result-oriented implementation of

ideas relevant to my project.

8.Future Scope: The future scope of this project

involves several potential enhancements and

applications. Firstly, the ALU can be expanded to

support a wider bit-width, such as 8-bit or 16-bit,

enabling more complex arithmetic operations.

Additionally, integrating more advanced operations

like multiplication, division, and logical shifts would

increase the ALU's versatility. The design could also

be optimized for power efficiency and speed by

leveraging the advanced features of the Artix-7 FPGA,

such as parallel processing and hardware acceleration.

Moreover, the ALU could be integrated into larger

digital systems, such as microprocessors or embedded

systems, for use in real-time processing applications,

including signal processing, control systems, and

machine learning. Future work could also explore

incorporating error detection and correction

mechanisms, improving the robustness and reliability

of the ALU in critical applications.

REFERENCES:

[1]. CH. J. PRAKASH, “An efficient VLSI

implementation of EDGE detection of images,”

INTERANTIONAL JOURNAL OF SCIENTIFIC

RESEARCH IN ENGINEERING AND

MANAGEMENT, vol. 08, no. 05, pp. 1–5, May 2024.

doi:10.55041/ijsrem33857

[2] K. MIRANJI, “Multi-degree smoother for low

power testable digital system design using BS-LFSR

and scan-chain ordering techniques,” International

Journal of Electronics Signals and Systems, pp. 23–30,

Jul. 2014. doi:10.47893/ijess.2014.1193

[3]. S. A. Ahmed and M. R. R. A. M. Ali, "FPGA-

Based ALU Design with Extended Operations," IEEE

Transactions on VLSI Systems, vol. 31, no. 7, pp.

1333-1341, Jul. 2023. doi:

10.1109/TVLSI.2023.3124392.

[4]. J. Kumar, A. S. Rawat, and S. Agarwal, "Design

and Implementation of a High-Speed ALU on FPGA

for Embedded Systems," Journal of Embedded

Systems, vol. 19, no. 5, pp.275-

285,May2022.doi:10.1016/j.jes.2022.04.003.

[5].P. Kumar, R. Singh, and A. Sharma, "Energy-

Efficient ALU Design Using FPGA for Low-Power

Systems," IEEE Transactions on Circuits and Systems,

vol. 68, no. 6, pp. 456-467, Jun. 2021. doi:

10.1109/TCSI.2021.3078492.

[6] A. D. Patel and S. N. Rao, "FPGA Implementation

of a 32-bit Arithmetic Logic Unit," IEEE Access, vol.

8, pp. 21519-21527, 2020. doi:

10.1109/ACCESS.2020.2974131.

[7]. M. A. Ali, J. S. Sharma, and P. M. Kumar,

"Optimized 8-bit ALU Design Using FPGA and

Verilog," International Journal of Computer

Applications, vol. 174, no. 4, pp. 45-52, Nov. 2021.

doi: 10.5120/ijca2021122644.

[8]. A. M. Al-Sarhan, M. A. Ibrahim, and N. G.

Ibrahim, "FPGA-Based Arithmetic Logic Unit for

Real-Time Signal Processing," IEEE Transactions on

Signal Processing Systems, vol. 13, no. 2, pp. 123-132,

Feb. 2020. doi: 10.1109/TSP.2020.2950479.

[9]. S. M. Ali, R. H. Bhatti, and A. S. Dastgir, "A 16-

bit ALU for FPGA: Design, Verification, and

Performance Evaluation," Journal of FPGA

Applications, vol. 10, no. 3, pp. 243-252, Oct. 2021.

doi: 10.1016/j.jfpa.2021.07.002.

[10]. H. S. Rai, R. Tiwari, and S. Singh, "FPGA-Based

ALU with Support for Advanced Bitwise Operations,"

IEEE International Conference on FPGA Design, pp.

215-220, Mar. 2022. doi:

10.1109/ICFP.2022.9824563.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 11 | Nov - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM38905 | Page 9

[11]. P. G. Shrestha, M. R. Bhagat, and N. K. Gupta,

"Reconfigurable ALU Design for FPGA with

Multilevel Optimization," IEEE Transactions on

Reconfigurable Computing, vol. 9, no. 4, pp. 275-285,

Dec. 2020. doi: 10.1109/TRC.2020.3037638.

[12]. A. M. Tiwari, P. J. Raghav, and R. J. Kumar,

"FPGA Implementation of a 4-bit ALU Using Verilog

for Educational Purposes," IEEE Transactions on

Education, vol. 63, no. 4, pp. 299-306, Nov. 2020. doi:

10.1109/TE.2020.2969432.

[13.] N. C. Singh, R. P. Gupta, and A. B. Verma,

"Design of a Power-Efficient 16-bit ALU on FPGA,"

IEEE Transactions on Very Large-Scale Integration

(VLSI) Systems, vol. 29, no. 6, pp. 1234-1242, Jun.

2021. doi: 10.1109/TVLSI.2021.3042300.

Bibliography: Areti Hemanth Kumar is an aspiring

VLSI specialist with a Bachelor of Technology (B.

Tech) in Electronics and Communication Engineering

(ECE), completed in 2023. I have a year of experience

as an R&D intern in the VLSI domain and have

undergone specialized training at NIELIT Calicut,

focusing on digital systems and VLSI design. This

work includes projects in FPGA-based systems, IoT-

enabled solutions, and AI/ML applications. Currently,

I am preparing for a master’s degree with a

specialization in VLSI to advance their expertise in

front-end design and digital systems.

http://www.ijsrem.com/

