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 Abstract 

 Uncovering the drivers that shape biodiversity patterns is critical to understand fundamental ecological 

 and evolutionary processes, but also to assist biodiversity managers and conservation agencies. 

 Despite evidence that biodiversity composition is influenced by processes at different spatial scales, 

 little is known about the role of fine-scale oceanographic processes in controlling marine biodiversity 

 patterns. This is particularly important in biodiversity hotspot regions, where small changes in local 

 conditions may facilitate introductions of novel species, local extirpation, or even extinction. Here, we 

 conducted oceanographic modelling and environmental DNA (eDNA) metabarcoding to investigate 

 how fine-scale oceanographic processes shape marine biogeographic patterns across the Galápagos 

 Islands. We found that eDNA data confirmed previously reported biogeographic regionalization, and 

 demonstrated significant differences in community structure across the highly diverse oceanographic 

 seascape of the Galápagos Islands. We then tested the effect of local current systems with a novel 

 metric, termed oceanographic resistance, measuring the cumulative seawater flow resistance 

 between pairs of geographic sites. Oceanographic resistance explained a significant proportion of 

 variation in eDNA-measured beta dissimilarity between sites (2.0% of total), comparable in influence 

 to some of the most important abiotic drivers, such as temperature (2.9%) and geographic distance 

 between sites (11.5%). This indicates that oceanographic resistance can be a useful metric to 

 understand the effects of current systems on marine biota. Taken together, our results indicate that 

 marine communities are particularly sensitive to changes in local current systems, and suggest that 

 fine-scale oceanographic processes may have an underappreciated role in structuring marine 

 communities globally. 
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 Main 
 Spatial patterns of marine biodiversity are profoundly influenced by physical factors, such as oceanic 

 currents and geographic barriers, with direct consequences on species distributions and community 

 structure  (1–3)  . Indeed, research has shown that planktonic communities increase in similarity 

 proportionally to oceanographic connectivity  (4–6)  , with distance travelled along currents having the 

 same effect on beta diversity as geographic distance on land (so called distance-decay relationships) 

 (7, 8)  . Despite decades of research into how oceanography shapes population connectivity, there are 

 very few studies that explore the importance of local or finescale changes in ocean currents relative to 

 other variables (such as temperature) in controlling marine biodiversity patterns  (9, 10)  . Furthermore, 

 we currently lack insight into whether submesoscale (horizontal scales < 100 km) ocean currents 

 structure plankton biodiversity  (11)  , or whether such currents affect free-swimming non-planktonic 

 (nektonic) communities. This is particularly important in biodiversity hotspot regions, where even small 

 changes in environmental conditions may lead to substantial conservation challenges. 

 The dispersal of holoplanktonic organisms and early life-history stages of nektonic organisms is often 

 defined by ocean currents, with many species completing their life cycle adrift in the ocean. Finescale 

 ocean currents may shape the distribution of nektonic species because: (i) a substantial proportion of 

 nektonic organisms have planktonic early-life history stages  (12)  ; (ii) plankton and nekton are tightly 

 connected through food webs  (13, 14)  ; and (iii) nektonic organisms tend to track thermal optima in 

 current systems  (15)  . Conversely, the distribution of some nektonic species may not be related to 

 currents, as such species can migrate thousands of kilometres moving across current systems  (16) 

 and optimise behaviour to exploit resources that are rarely affected by ocean circulation  (17, 18)  . In 

 order to accurately test how factors such as finescale currents affect marine biodiversity patterns 

 across different spatial scales, high-resolution biodiversity data are required. 

 In recent years, the use of high-throughput sequencing to analyse fragments of DNA found in the 

 environment (often called environmental DNA or eDNA) has become common practice, and is now an 

 established approach for marine biodiversity monitoring and a reliable way of producing 

 whole-community data  (19, 20)  . Our understanding of marine biodiversity is being revolutionised 

 through eDNA surveys, with research uncovering previously undocumented global patterns  (2, 5)  , 

 revealing previously undescribed taxonomy  (21)  and, most recently, reconstructing long-dead marine 

 taxa and biodiversity from ancient eDNA  (22, 23)  . Despite all these advances, marine eDNA studies 

 rarely integrate ocean circulation into their analyses  (5, 24)  , and studies in community ecology have 

 only explored the link between eDNA patterns and ocean currents with a relatively small subset of 

 taxa  (9, 10)  . There is therefore a pressing need to understand the potential role of ocean flows on 

 biodiversity patterns considering a wide array of both planktonic and non-planktonic organisms. 

 Here, we elucidate the effect that ocean currents have on marine community structure across the 

 waters surrounding the iconic Galápagos islands. We first use eDNA metabarcoding of seawater 

 samples collected from across the archipelago to detect spatial patterns of fish and elasmobranch 
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 biodiversity. Subsequently, we model the ocean circulation at high (submesoscale-permitting) 

 resolution and infer the effect of eDNA decay to better understand the detected patterns of nektonic 

 biodiversity. Finally, we develop a metric that describes local current systems from ocean 

 model-generated data, motivated by the omission of ocean flow pathways in geographic 

 distance-based metrics. We use this new metric to assess the relationships among ocean currents, a 

 proxy for abiotic conditions (ocean temperature), and community dissimilarity. 

 Results 
 Galápagos fish biodiversity 

 Metabarcoding of eDNA water samples collected from sites across the Galápagos (Fig. 1a) produced 

 a fish (teleost and elasmobranch) dataset containing 551 amplicon sequence variants (ASVs) of 

 which 66 could be assigned to species level, 216 to Genus, 167 to Family, and 99 above Family level. 

 Read numbers and diversity in negative control samples were typical for eDNA metabarcoding 

 datasets  (20)  (full details provided in Supplementary Information 1). 

 Fish communities clustered in the nMDS ordination (Fig. 1c) according to previously reported 

 bioregions  (25)  . Specifically, the Western and Elizabeth bioregions appeared to cluster within each 

 other, and were separated from the Northern and Central South-eastern bioregions. Roca redonda 

 was a site not surveyed in Edgar et al.  (25)  (See Fig. S1), and clustered (top right of Fig. 1c) with sites 

 from the Northern bioregion, and not with those from the Western bioregion as predicted by previous 

 work  (25)  . 
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 Fig. 1  . a) Map of the Galápagos islands, with sampling  sites marked (dots) and depth indicated by 

 blue colour gradient. b) ASV richness across the sampling sites grouped by the four main bioregions 

 and averaged over field replicates, with the mean value indicated by a solid horizontal line. c) 

 Non-metric multidimensional scaling based on Jaccard dissimilarity of community composition among 

 sampling sites. Each point represents a single field replicate, with the three replicates per site joined 

 by a grey convex hull. In all plots, point colour indicates bioregions from  (25)  as indicated in b). 
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 There was a statistically significant overall difference among bioregions (PERMANOVA F  3,19  = 2.08, p 

 < 0.001), with pairwise tests showing significant results (p < 0.01) among all bioregions except for the 

 Elizabeth bioregion, which was not significantly (p > 0.05) different to any other bioregion (full model 

 outputs in Table S1). Pairwise tests for significant differences in multivariate dispersion between 

 bioregions (PERMDISP procedure) indicated that only the Elizabeth bioregion had significantly 

 different multivariate dispersion compared to the Central South-eastern and Western bioregions (p < 

 0.01 in both cases, see Table S1 for full model output). A one-way ANOVA indicated no significant 

 difference in mean ASV richness among bioregions (Fig. 1b) (F  3,19  = 0.72, p > 0.05). 

 Finescale ocean currents influence local fish biodiversity 

 We found a positive relationship (distance-decay) between eDNA-measured site dissimilarity and 

 geographic distance between pairs of sites (Fig. 2). To quantify the current faced by marine organisms 

 travelling through the ocean, we calculated a novel metric that we termed oceanographic resistance. 

 This metric is computed for pairs of sites, and is positive when the average flow along a given path in 

 the ocean is in the same direction of travel, and negative when the average flow is against the 

 direction of travel. We parameterized this metric using the average horizontal flow field values in a 

 realistic, observationally ground-truthed,  submesoscale-permitting ocean circulation model from the 

 eDNA sampling month  (26)  , also extracting the mean temperature for the month of eDNA sampling for 

 each site in the model. There was a significant relationship between site dissimilarity and both 

 geographic distance, temperature difference and oceanographic resistance (F  3,503  = 32.8, p < 0.01 for 

 all parameters). Geographic distance, temperature difference and oceanographic resistance 

 explained 11.5%, 2.9% and 2.0% of the variation in the site dissimilarity index, respectively. 
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 Fig. 2.  Modified asymmetric Jaccard dissimilarity  for each pair of sites, displayed against geographic 

 distance measured in km. Each point is coloured according to the oceanographic resistance between 

 pairs of  sites; point colour indicates oceanographic resistance with scale shown on the left, measured 

 in m s  -1  . Loess smoothed fit lines for data below  the 20  th  percentile and above the 80  th  percentile  of 

 oceanographic resistance are shown as red and blue lines respectively, with shading indicating the 

 95% confidence interval of the fit. Fish illustrations  (27)  on the right denote the direction of average 

 current flow for highly positive (blue) and highly negative (red) resistance. 

 Across the distance-decay relationship when oceanographic resistance is negative, sites were on 

 average more dissimilar than in cases where oceanographic resistance was positive (Fig. 2). A similar 

 effect was observed with the temperature data, with greater dissimilarity between sites on average 

 when temperature change between sites was positive (Fig. S2). Additionally, and in order to evaluate 

 if fish ASV richness could also be linked to other measures of ocean circulation, particle release 

 experiments were conducted with the same ocean circulation model used to define our oceanographic 

 resistance metric. Particles were released into the model from the sampling sites, and run back in 

 time for 72 hours to estimate possible eDNA contributions for each sampling event. No significant (p > 

 0.05) relationship was found between ASV richness and all four calculated metrics of oceanographic 

 spread (e.g., mean distance from release point) (Figure S3). 
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 Discussion 
 We found heterogenous fish community structure across the Galápagos islands, with eDNA 

 metabarcoding-measured beta diversity patterns principally agreeing with previously described 

 bioregions  (25)  . Remarkably, we found not only that variation in fish communities could be explained 

 with the submesoscale flow data generated by our ocean circulation model, but that the proportion of 

 variance explained by currents was similar to temperature, a well-known determinant of marine 

 biodiversity  (15, 28)  . Overall, these results help us to not only better understand fish communities in 

 this unique archipelago, but also provide a novel method to investigate the role of finescale currents 

 on ecosystems across the globe. 

 Given that previous work has described fish bioregionalization across the archipelago  (25)  , it is 

 unsurprising that eDNA metabarcoding provides similar evidence for fish biogeography. However, 

 more broadly, these patterns underline the unique nature of the Galápagos, with unusually clear 

 differences in communities across short (<200 km) geographic distances. Many eDNA surveys have 

 found biogeographic regionalization, particularly changes in community structure (beta diversity) in 

 marine ecosystems  (28–32)  . However, other studies have shown that marine fish communities can 

 also have homogenous community structure, even across large (>1000 km) distances  (33–35)  . 

 Collectively these investigations suggest that homogenous biogeographic structure should be our null 

 hypothesis for communities of highly mobile marine organisms at local regions. An important novel 

 piece of biogeographic evidence in our study is the unexpected grouping of Roca Redonda in the 

 Northern bioregion, this should prompt further research to investigate the, here un-sampled, 

 Far-Northern Islands (Darwin & Wolf) which may have unanticipated biodiversity, potentially requiring 

 a change in bioregion designation and thus management strategy. Given the limited sampling of the 

 Elizabeth bioregion, further work is required to understand how, and if, fish communities in this region 

 differ from the surrounding Western bioregion. 

 Our analysis combining novel oceanographic modeling and eDNA metabarcoding data could only 

 explain a small proportion of the total variation among sites using distance and temperature data (Fig. 

 2 and Fig. S2). Studies evaluating the explanatory power of a set of environmental and/or spatial 

 predictors typically only describe a small fraction of the total beta diversity in marine communities  (28, 

 36, 37)  . These findings are also reflected in meta-analyses across ecosystems, with much of the 

 measured variation in communities remaining unexplained  (38–40)  . Metacommunity theory predicts 

 that ecological drift (stochastic demographic changes in species composition) is likely to occur under 

 both neutral and selective population dynamics  (41)  , and thus some variation in community 

 composition will always be unexplained by environmental and spatial predictors. Furthermore, there is 

 frequently a compromise between surveying across space and through time to capture community 

 dynamics, with even the most comprehensive ocean surveys showing only a snapshot of temporal 

 dynamics  (5)  . Therefore, typical ecological datasets are unlikely to provide a complete explanation of 

 community structure from characteristically recorded parameters. 
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 Our analyses indicated that geographic distance, temperature and oceanographic resistance - a 

 metric of the finescale ocean currents’ propensity (or opposition) to connect spatially separate sites - 

 were important explanatory variables describing patterns in beta diversity in Galápagos fishes. 

 Distance-decay relationships (changing biotic composition across space) are well studied in marine 

 ecosystems; thus an effect of geographic distance was expected  (8)  . Similarly, temperature has been 

 shown to be a key variable structuring communities of both fish  (42)  and other marine organisms  (5, 

 43)  . Work exploring the effect of current systems on marine biodiversity has either combined 

 geographic and current-based distance  (9)  , or been limited to benthic marine organisms  (10)  . In line 

 with our findings, these studies do find an important role for finescale ocean currents in structuring 

 marine communities. We show that oceanographic resistance contains unique explanatory 

 information, demonstrating that the direction and magnitude of currents connecting sites can influence 

 the composition of fish communities. Given the significant effect of human-induced climate change on 

 ocean currents and mixing  (44)  , work is urgently needed to assess how currents on such fine scales 

 will affect biodiversity patterns in other taxa and ecosystems. 
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 Methods 
 Study area 

 The Galápagos Archipelago is made up of 13 major islands ranging in isolation from 3-25 

 NM from their nearest neighbor, lying in the Eastern Tropical Pacific Ocean, approximately 

 500 NM west from mainland Ecuador. Previous diver-based rocky reef surveys of fish and 

 macroinvertebrates in shallow coastal waters around the islands  (25)  revealed a marked 

 bioregional signal across the archipelago, with a warm, far northern region around the 

 remote islands of Darwin and Wolf; a warm northern region encompassing the islands of 

 Pinta, Genovesa and Marchena; a cool western region around Fernandina and western 

 Isabela, and a mixed region around the central islands (see Fig. S1). The area including the 

 channel separating Isabela and Fernandina, and adjacent Elizabeth Bay, was sufficiently 

 different from the western bioregion to merit its own status. 

 Sample collection 

 We collected seawater samples from 23 sites across the southern and central Galápagos 

 Islands (Fig.1a) during September 2018 (see Table S2 for details). At each sampling point 1 

 L of seawater was collected from 30 cm below the surface with a clean Kemmerer water 

 sampler and filtered through a 0.22 μm polyethersulfone Sterivex filter (Merck Millipore, 

 Massachusetts USA) using a sterile 50 ml luer lock syringe. Additionally, 2 L of seawater 

 were collected at the maximum depth of each site (ranging from 11.4 to 100 feet) and filtered 

 using the same method, resulting in a total of 3 L of water per site. As metazoan diversity 

 detected by eDNA varies across depth  (45)  , this approach aimed to characterise total fish 

 diversity at the site. To minimise contamination among samples, after every filtration we 

 bleached (5% solution) the materials and filtered distilled water as a negative control. We 

 added 2 ml of ATL Buffer (Qiagen) to each Sterivex filter to preserve eDNA and stored them 

 at room temperature until further processing. 

 DNA extraction and library preparation 

 We used the dedicated low-DNA laboratory at the National Oceanography Centre, 

 Southampton (United Kingdom) to conduct the DNA extraction. This laboratory was 

 separated from facilities where PCR was performed. No high copy DNA template, cultures or 

 PCR products were permitted in this laboratory. All laboratory surfaces, reused equipment 

 and reagent packaging were thoroughly cleaned with 5% bleach solution. DNA was 

 extracted following the SX  CAPSULE  method from  (46)  , with sample identifiers blinded before 

 extraction to avoid unintentional human bias. The final DNA elution was performed with 

 200ml DNase free water and an additional re-elution was performed with the eluate. Marine 

 eDNA samples can contain PCR inhibitors, which have a negative effect on species 
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 detection sensitivity  (47)  . We therefore tested for inhibition using a Primer Design Internal 

 Positive Control qPCR Kit (Southampton, United Kingdom) and Primer Design Precision 

 Plus Mastermix with 20 µl reactions containing 4 µl of eDNA for each sample under the 

 manufacturer recommended conditions. Inhibited samples were expected to have an 

 increase in Ct (cycle threshold) of >1 compared to the unspiked reaction. As inhibition was 

 detected in a fraction of sites, all samples were treated using the Zymo OneStep PCR 

 Inhibition Removal Kit (Zymo Research, Irvine, United States of America or USA) following 

 the manufacturer recommended protocol. 

 We used metabarcoding primers that targeted a variably sized (163-185 bp) fragment of the 

 mitochondrial 12S region  (48)  . These primers consist of two sets, one targeting teleost fish, 

 and a second set targeting elasmobranchs (sharks and rays). The entire metabarcoding 

 PCR and library build was performed independently for these two primer sets. 

 Metabarcoding libraries were constructed using a 2-step method where an initial PCR 

 incorporates an adaptor sequence onto the 5’ end of the primers that serves as the target for 

 a second PCR that incorporates index sequences for demultiplexing and Illumina 

 sequencing adaptors (following Holman et al. 2021). For each set of primers PCR reactions 

 were conducted in 20 µl volumes consisting of 10 µl AmpliTaq Gold 360 mastermix (Agilent 

 Biosystems, Waltham, USA), 1.6 µl of primers (5 µM per primer) and 2 µl of undiluted 

 cleaned eDNA template. The reaction proceeded with an initial hold at 95°C for 10 minutes 

 followed by twenty cycles of 95°C for 30 seconds, 59°C for 30 seconds and 72°C for 60 

 seconds, a terminal hold at 72°C was conducted for 10 minutes. As the number of PCR 

 replicates per sample increases the diversity detected  (49)  , we conducted eight independent 

 replicate reactions per water sample that were then pooled for bead cleaning and indexing. 

 These pools were cleaned using Beckman Coulter (Brea, USA) AMPure XP beads, for each 

 160 µl pool (eight 20 µl reactions), 128 µl of beads were added and the manufacturer 

 recommended protocol was followed with a final elution of DNA into 20 µl of 10mM Tris-HCl 

 buffer (pH 8.5). The second PCR was conducted in 20 µl volumes consisting of 10 µl 

 AmpliTaq Gold 360 mastermix (Agilent Biosystems, Waltham, USA), 1.0 µl of primers (10µM 

 per primer), and 5µl of bead-cleaned first PCR product. The reaction proceeded with an 

 initial hold at 95°C for 10 minutes followed by fifteen cycles of 95°C for 30 seconds, 55°C for 

 30 seconds and 72°C for 60 seconds, a terminal hold at 72°C was conducted for 10 minutes. 

 The product was then bead cleaned as above with 16 µl of beads in each 20µl reaction. 

 Libraries were then individually quantified using the New England Biolabs (Ipswich, United 

 States) NEBNext Library Quant Kit and pooled at equal molarity into two libraries, one for 

 each initial primer set. These two libraries were diluted to 4 nM, spiked with 5% PhiX for 

 diversity and sequenced in two independent runs of a Illumina (San Diego, United States) 

 MiSeq instrument using a V3 2x300 bp kit. Negative controls from sampling, DNA extraction 
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 and PCR one and two blanks (RT-PCR grade water) were all amplified, pooled and 

 sequenced along with experimental samples. 

 Bioinformatic analyses 

 Raw sequences were demultiplexed using the GenerateFastQ (v.2.0.0.9) module on the 

 MiSeq control software (v.3.0.0.105) under default settings. Primers were then trimmed from 

 both paired reads, ensuring both the forward and reverse primer was present in each read 

 pair using Cutadapt  (50)  (v.3.2). As the sequencing length covered the entire target 

 amplicon, the reverse complement of each primer was also trimmed using Cutadapt from the 

 3’-end of each read pair. Following primer trimming reads were denoised into ASVs using 

 the DADA2 pipeline (v1.16.0)  (51)  in R  (52)  (v.4.0.3) under default parameters unless 

 detailed below. The  filterAndTrim  function was conducted  using a maxEE value of 1 and 

 truncLen value of 120 bp for both read pairs. After the generation of an ASV table the data 

 was curated by running lulu (v.0.1.0)  (53)  under the default parameters. Each independently 

 sequenced dataset was then cleaned separately as follows using R. Positive observations 

 were discarded if they had fewer raw reads than the sum of all reads found in the negative 

 control samples for each ASV, or if they had fewer than three reads. ASV by sample tables 

 were then transformed into proportional abundance per sample and data from identical 

 ASVs was merged using the collapseNoMismatch function in DADA2. It is commonplace to 

 multiplex the two MiFish primer sets (elasmobranch and teleost) during PCR and treat them 

 as a single marker  (48, 49)  , because they differ by only three nucleotides across the forward 

 and reverse primers, they amplify many species in common. However, we instead chose to 

 increase the sequencing output per sample and conservatively merged these primer sets 

 bioinformatically as above. ASVs were then searched against the entire NCBI  nt  database 

 (updated on 01-02-2021) using a BLAST+ (v.2.11.0) nucleotide search with 

 -num_alignments  set to 200. These alignments were  then filtered using the R script 

 ParseTaxonomy (DOI:10.5281/zenodo.4564075) that was previously developed  (28)  to 

 generate lowest-common-ancestor assignments in the case of multiple matches. Initial 

 analyses revealed some errors in the assignments, likely due to missing taxa in databases, 

 so all ASV assignments were curated using the online NCBI blastn portal (accessed 

 March-August 2022). Erroneous sequences were identified as having no match to any 

 nucleotide or protein (using a blastx search) 12S sequence, all such sequences were 

 discarded. ASVs matching domestic animals (cow, dog, chicken etc.) or human DNA were 

 removed from the main dataset. Finally, ASVs with an unambiguous species assignment 

 (>99% sequence similarity across the whole sequence, matches to other species in the 

 genus >1% sequence similarity from the proposed assignment) were merged. 
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 Oceanographic analyses 

 Particle tracking simulations were conducted using a realistic, observational ground-truthed, 

 previously described oceanographic model  (26)  constructed using MITgcm  (54)  with 

 bathymetry from General Bathymetric Chart of the Oceans (GEBCO_14) Grid. Model grid 

 resolution was initially 4 km in the horizontal between ± 5º latitude stretching out to ∼12 km in 

 latitude at the model boundaries, with 840 grid points in X and 600 in Y and a grid origin at 

 17.8ºS, 105ºW. The vertical grid comprised 75 depth levels, with vertical resolution varying 

 with depth from 5 m over the first 50 m, 9.8 m to 164 m depth, and 13.7 m to 315 m depth, 

 and a maximum cell height of 556 m below 3000 m. This model was run with three 

 completely open boundaries (North, South and West), using periodic boundary forcing for 

 temperature, salinity and velocity fields and a 15-grid box thick sponge layer for velocity. 

 Initial conditions and monthly boundary forcing were taken from the Mercator Ocean 

 reference model (https://www.mercator-ocean.fr/), a global ocean model based on 1/12 

 (0.083) degree NEMO (https://www.nemo-ocean.eu/). 

 Following the initial four km resolution model run, a smaller area encompassing the 

 Galápagos Marine Reserve was modelled at 1 km horizontal resolution using the same 

 vertical resolution as the 4 km model.  The 1 km model has 630 grid points in X and 768 grid 

 points in Y, with a grid origin at 3.1ºS 94.1ºW.  Boundary forcing and initial conditions for the 

 1 km model were taken from the 4 km model. 

 Atmospheric forcing, wind stress and evaporation and precipitation for both models were 

 taken from the ERA-Interim  (55)  reanalysis at a 3-hour temporal resolution for all fields, and 

 radiation (shortwave and longwave) forcing from Modern-Era Retrospective analysis for 

 Research and Applications (v.2) (MERRA2  (56)  ) at hourly temporal resolution. 

 Particle tracing experiments were performed in the 1 km model using TRACMASS  (57)  to 

 establish the likely origin of waters at the sample sites. Particles were released five times for 

 each sample site (2 days before to 2 days after) sampling, covering a horizontal area of ~ 4 

 km  2  around the site, from the surface to 20 m depth.  These particles were then tracked 

 backwards-in-time through the model flow field for 3 days. The final positions of particles 

 from all releases were aggregated and normalised (as a fraction, where one is the sum of all 

 particles released) and a spatial distribution for likely sample site water origin estimated. 

 Four parameters describing the spread of the particles 48 hours before sampling were 

 calculated. The direct line distance between the average latitude and longitude of the points 

 from the release point, the mean distance of the particles from the mean latitude and 

 longitude of the points, the surface area occupied by grid squares with greater than 0.01% of 

 released particles, and the average of the individual particle direct line distances from the 

 release point. 
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 Calculating oceanographic resistance 

 The General Bathymetric Grid of the Oceans 2022 grid  (58)  was subset around the 

 Galápagos Islands using the sf package (v.1.0.9.)  (59)  in R (v.4.2.2). This dataset contains 

 seawater depth and coastline information at a resolution of 15 arcseconds. For each 

 possible journey from every site to every other site the shortest path avoiding land masses 

 was calculated using the  shortestPath  function in the  gdistance  R package (v.1.6)  (60)  . 

 These data are henceforth referred to as geographic distance. 

 To estimate the overall water resistance experienced by an agent travelling along the 

 shortest path in the study area between two sites, taking into account ocean currents, we 

 devised a metric that we refer to as oceanographic resistance, calculated as follows. For 

 each site-to-site geographic distance, a point was extracted from along the path every 1 km 

 using the  spsample  function from the  sf  R package.  Northings were extracted from the 1 km 

 model as mean monthly northwards velocity (m s  -1  positive  going north) and Eastings as 

 mean monthly eastwards velocity (m s  -1  positive going  east) from the 1 km model for 2018. 

 From these Northing and Easting values the resultant vector was calculated and represented 

 by magnitude and azimuth degrees. The azimuth of the oceanographic current for each 

 extracted point was then compared to the azimuth between the extracted point and the 

 subsequent point along the path. The resultant angle indicates the difference between the 

 direction of travel and the direction of the current, with for example, zero degrees indicating 

 that the current and direction of travel are identical and 180 degrees indicating that the 

 current and direction of travel are opposite. This comparison angle was then transformed 

 using a cosine function to give a value of 1 and -1, respectively for the previous examples. 

 The oceanographic resistance at the extracted point was calculated by multiplying the result 

 of the cosine function by the magnitude of the current at the point. Finally, the oceanographic 

 resistance for a given path was calculated as the mean of the oceanographic resistance of 

 all selected points on the path between the start and end points. Oceanographic resistance 

 is a mean value of a series of transformed vectors measured in m s  -1  , and as such is a 

 scalar measured in m s  -1  . 

 Ecological analyses 

 All analyses were conducted in R (v.4.2.2) unless otherwise stated. Differences in mean ASV 

 richness between bioregions were evaluated using a one-way ANOVA. Beta dissimilarity 

 between sites was visualised with non-metric multidimensional scaling (nMDS) using a 

 Jaccard dissimilarity, an index appropriate for testing biogeographical patterns  (61)  , 

 implemented with the metaMDS function from vegan (v.2.6-4)  (62)  . All beta diversity 

 analyses were conducted on averaged values among the three replicates per site. 

 Subsequent statistical tests on bioregions followed the designation of  (25)  with one site 
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 (Roca Redonda) in a previously unsurveyed region placed in a bioregion according to the 

 results of the nMDS. Differences in within-bioregion multivariate dispersion were evaluated 

 using the PERMDISP  (63)  procedure implemented in  betadisper  function from vegan, with 

 post hoc testing of pairwise differences tested using the  TukeyHSD  function. Statistically 

 significant differences between bioregions were evaluated using a PERMANOVA  (64)  on 

 Jaccard dissimilarities implemented using the  adonis2  function in vegan. Pairwise 

 PERMANOVA comparisons between bioregions were implemented using the  adonis.pair 

 function in the EcolUtils package (v.0.1)  (65)  . 

 To test for possible correlations between ASV richness and particle spread, least-square 

 regression models were implemented using the function  lm  with each of the particle spread 

 statistics described above. Relationships between beta dissimilarity and particle spread 

 characteristics were evaluated using a distance-based redundancy analysis implemented 

 with the  dbrda  function from vegan and Jaccard dissimilarities. 

 In contrast to oceanographic resistance, Jaccard dissimilarity is symmetric considering the 

 order of sites. For example, for a pair of sites, the oceanographic resistance defined above 

 may differ depending on the direction of travel from site A to site B, while the Jaccard 

 dissimilarity measures the difference between sites symmetrically. In order to test for an 

 effect of oceanographic resistance on beta diversity a modified asymmetric Jaccard 

 dissimilarity was implemented such that the order of the two sites supplied to the function 

 (i.e. Site A to Site B / Site B to Site A) changed the output as below. 

 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 ( 𝐴 ,  𝐵 )   =     𝐴 ∩ 𝐵 
 𝐴 ∪ 𝐵 

 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐     𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ( 𝐴 ,  𝐵 )   =     𝐴 ∩ 𝐵 
 𝐴 

 This modified dissimilarity measure can be interpreted as the dissimilarity between site A 

 and site B considering only species present in site A. In other words, species not found in 

 site A that are present in site B do not contribute to the dissimilarity index. Asymmetric 

 dissimilarity was used as the dependent variable in a least-squares regression against 

 geographic distance with an additive effect of oceanographic resistance with the  lm  function 

 in R, values comparing sites to themselves were omitted before analysis. In order to 

 evaluate the comparative effect of oceanographic resistance to other marine conditions we 

 extracted average October 2018 mean sea temperature from the top 20 M of the model 

 output for each site. These values were transformed into temperature differences between 

 sites and incorporated in the above linear model as an additive effect. The  etasq  function 

 from the heplots (v.1.4-2) was used to calculate the partial R  2  for each of the variables  (66)  . 
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 Figures 

 Figure 1.  a) Map of the Galápagos islands, with sampling  sites marked (dots) and depth indicated by 

 blue colour gradient. b) ASV richness across the sampling sites grouped by the four main bioregions 

 and averaged over field replicates, with the mean value indicated by a solid horizontal line. c) 

 Non-metric multidimensional scaling based on Jaccard dissimilarity of community composition among 

 sampling sites. Each point represents a single field replicate, with the three replicates per site joined 

 by a grey convex hull. In all plots, point colour indicates bioregions from (25) as indicated in b). 
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 Figure 2.  Modified asymmetric Jaccard dissimilarity  for each pair of sites, displayed against 

 geographic distance measured in km. Each point is coloured according to the oceanographic 

 resistance between pairs of  sites; point colour indicates oceanographic resistance with scale shown 

 on the left, measured in ms  -1  . Loess smoothed fit  lines for data below the 20  th  percentile and above 

 the 80  th  percentile of oceanographic resistance are  shown as red and blue lines respectively, with 

 shading indicating the 95% confidence interval of the fit. Fish illustrations on the right denote the 

 direction of average current flow for highly positive (blue) and highly negative (red) resistance. 
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