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Abstract 
The directed differentiation of stem cells into specific cell types is critical for regenerative medicine 
and cell-based applications. However, current methods for cell fate control are inefficient, 
imprecise, and rely on laborious trial-and-error. To address these limitations, we present a method 
for data-driven multi-gene modulation of transcriptional networks. We develop bidirectional 
CRISPR-based tools based on dCas12a, Cas13d, and dCas9 for simultaneously activating and 
repressing many genes. Due to the vast combinatorial complexity of multi-gene regulation, we 
introduce a machine learning-based computational algorithm that uses single-cell RNA 
sequencing data to predict multi-gene perturbation sets for converting a starting cell type into a 
desired target cell type. By combining these technologies, we establish a unified workflow for 
data-driven cell fate engineering and demonstrate its efficacy in controlling early stem cell 
differentiation while suppressing alternative lineages through logic-based cell fate operations. 
This approach represents a significant advancement in the use of synthetic biology to engineer 
cell identity. 
 
Introduction 
Synthetic biology applies engineering principles to build biological systems. Recent advances in 
the field have been driven by the convergence of powerful computational tools, large biological 
datasets, DNA synthesis and sequencing technologies, and novel gene perturbation tools (e.g., 
CRISPR). Regenerative medicine and other cell-based applications could benefit tremendously 
from a synthetic biology-based approach where cell identity is rationally engineered in a data-
driven way. However, until now, integration of the necessary computational and experimental 
tools has been lacking. Here, we sought to bring all these elements together into a single, unified 
method for cell fate control.  

Cell identity can be controlled through small molecules, modulation of transcription factors, 
or CRISPR-activation (CRISPRa)1–3.Such strategies often rely on activating one or a few master-
regulator genes, which can execute broad perturbations in transcriptional networks. But broad 
network perturbations can cause imprecision and heterogeneity on the single cell level – major 
challenges in stem cell engineering applications.  Precision cell-fate control (defined as a high 
differentiation efficiency and low heterogeneity) may instead require careful sculpting of 
transcriptional networks. We hypothesized that simultaneous activation and repression of multiple 
genes can precisely fine-tune transcriptional networks, thus inducing desired cell states and 
blocking undesired ones. 

Simultaneous gene activation and repression has been demonstrated with CRISPR-dCas9 
technology in human cells4–9. With few exceptions9, however, these approaches have been limited 
to a “one-gene-up, one-gene-down” scheme. Downregulating one gene while upregulating 
another can indeed improve cell fate programming efficiency6 but has limited potential to 
reprogram the vast transcriptional networks that underlie cell fate commitment. New technology 
is needed that enables users to perform multi-gene activation and repression on a large scale. 
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Given such multi-gene control technology, however, how does one know which genes to 
modulate? Currently, empirical knowledge, intuition, and trial-and-error experimentation is 
required. Instead, we think precision cell-fate control must be data-driven. For example, large 
repositories of single-cell RNA sequencing (scRNA-seq) data exist and could serve as instruction 
manuals for cell fate conversion. Algorithms do exist that use such data to predict transcription 
factor perturbations10–18. Crucially, however, none of these predicts multi-gene sets for activation 
and repression, and they are therefore not suitable for precision control of multi-gene 
transcriptional networks. 

To address these challenges, we developed a method for data-driven cell reprogramming via 
engineering of multi-gene transcriptional networks, which we call PreciCE (Precision Cell-Fate 
Engineering, pronounced “precise”) (Fig. 1). PreciCE consists of two parts: computation and 
execution. The computation part consists of our new algorithm (“The PreciCE algorithm”), which 
translates scRNA-seq datasets of desired starting and target cell states into ‘genetic instructions’ 
for cell fate programming consisting of multi-gene perturbation sets. The execution part consists 
of three new CRISPR-based dual-Cas tools, each capable of performing simultaneous multi-gene 
activation and repression in human cells (“The PreciCE toolbox”). When combined, these 
technologies interface seamlessly to create a single workflow for data-driven precision cell-fate 
engineering. We show that (1) data-driven multi-gene perturbation enables higher precision than 
single-gene perturbation, (2) simultaneous up- and downregulation further enhances precision by 
actively blocking undesired cell states, (3) the unified integration of computational prediction and 
experimental tools brings synthetic biology to cell fate control, transforming cell differentiation into 
a precise engineering discipline. 
 
Results 
The PreciCE toolbox: Three CRISPR-based systems for the simultaneous up- and 
downregulation of many genes 
CRISPR arrays enable targeting multiple genes in a compact way19. We first validated that a 
recently reported Lachnospiraceae bacterium hyperactive dCas12a (hyperdCas12a), with its 
guide RNAs (gRNAs) encoded on a single CRISPR array, can mediate multi-gene activation (30 
genes) (Fig. S1A-B), with high co-modulation of target genes (Fig. S1C-D) and only a moderate 
drop in CRISPRa efficiency with longer arrays (Fig. S1E-F). CRISPR arrays can be rapidly 
designed, synthesized, and assembled20. We therefore sought to expand the use of such arrays 
for simultaneous activation and repression, and developed three dual-Cas systems, all combining 
hyperdCas12a with another Cas protein for multiplexed up- and downregulation. 
  
A CRISPR-Cas13d/dCas12a hybrid array enables multi-gene activation and repression 
We combined hyperdCas12a-miniVPR21 for programmable transcriptional activation with 
Ruminococcus flavefaciens Cas13d (Rfx-Cas13d)22 for targeted mRNA destruction. We chose 
this combination because both dCas12a and Cas13d can process their own CRISPR arrays22,23. 
Since the gRNA repeat sequences of Cas12a and Cas13d differ greatly (Fig. S2A) and are not 
recognized by each other’s Cas protein (Fig. S2B-E), we encoded their gRNAs on a single 
“hybrid” CRISPR array. We optimized multiple array architectures and parameters, focusing 
mostly on Cas13d optimization, as we and others have previously optimized CRISPR-Cas12a 
arrays20,24. We tested the effects of polymerase II (Pol. II) versus Pol. III promoters (Fig. S2F-J) 
in combination with Cas13d nuclear localization or export signals (Fig. S2F-G). We varied the 
position and amount of gRNAs on the array (Fig. S2K-O). And we confirmed that Rfx-Cas13d has 
collateral activity proportional to its target gene’s expression level25, though this effect could be 
removed by titering down expression of Cas13d’s doxycycline-inducible target gene GFP (Figs. 
S2P-S, S3F).  

With our optimized hybrid array design (Fig. 2A), we first simultaneously downregulated one 
gene (GFP) and upregulated another gene (CD9), as measured by flow cytometry (Fig. 2B). Next, 
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we demonstrated upregulation of three genes [CD9↑ IFNG↑ IL1RN↑] and simultaneous 
downregulation of three genes [GFP↓ HRAS↓ SMARCA4↓] in HEK293T cells, as measured by 
RT-qPCR (Fig. S2T-U) and scRNA-seq26 (Figs. 1C, S3A-E), with no detectable collateral effects 
(Fig. S3F). Thus, this design enabled multi-gene activation and repression using a single Pol. III-
transcribed CRISPR array.  
 
A CRISPR Lb-dCas12a/As-dCas12a hybrid array enables activation and epigenetic repression of 
many genes 
Some cell engineering applications may benefit from epigenetic repression, which can be more 
long-lasting than Cas13d-based RNA-level repression27,28. And because Cas12a’s gRNAs work 
when expressed under a Pol. II promoter, a dual-Cas12a hybrid system could enable very long 
CRISPR arrays and increased multiplexing capacity. So we sought to use two dCas12a variants 
for simultaneous activation and repression. We used engineered, nuclease-deactivated variants 
of L. bacterium Cas12a (hyperdCas12a21, subsequently denoted Lb-dCas12a) and 
Acidaminococcus species Cas12a (enhanced As-dCas12a29, denoted As-dCas12a).  

We found that Lb-dCas12a and As-dCas12a can process and use each other’s gRNAs (Fig. 
S4A-C)30, with As-dCas12a being especially promiscuous (Fig. S4B-C). They also recognize the 
same protospacer-adjacent motif (PAM) sequence (TTTV31). Interestingly, though, when we used 
an engineered gRNA repeat sequence for As-dCas12a32 (Fig. S4A-C) and used the less 
promiscuous Lb-dCas12a for repression (Fig. S4D-F) and encoded the hybrid As/Lb-dCas12a 
gRNA array on the Lb-dCas12a construct (Fig. 2D), we achieved greatly improved orthogonality. 
Indeed, we simultaneously activated endogenous CD9 and repressed GFP in HEK293T cells 
(Figs. 2E, S4G-H), with no sign of promiscuous interference (Figs. 2E, S4G). We further achieved 
simultaneous repression of three genes [GFP↓ HRAS↓ SMARCA4↓] and activation of three genes 
[CD9↑ IFNG↑ IL1RN↑] using this system in HEK293T cells, as measured by scRNA-seq (Figs. 
2F, S4I-K). 
 
A dCas9/dCas12a two-construct architecture ensures all-or-none up- and downregulation 
In cell fate programming applications, a heterogeneous mix of cell states may arise if some cells 
fail to modulate all target genes. Therefore, we sought to devise a CRISPR architecture that would 
ensure all-or-none multi-gene regulation, especially for experimental settings prone to inefficient 
uptake and delivery. We devised a two-construct system with a dCas12a-miniVPR activator and 
a dCas9-KRAB repressor (Fig. 2G). We encoded the dCas12a gRNAs on the same plasmid as 
the dCas9 gene, and the dCas9 gRNAs on the same plasmid as the dCas12a gene. Thus, only 
cells co-expressing both constructs would simultaneously perform activation and repression (a 
logical AND gate), whereas cells that expressed only one of the constructs would experience no 
gene modulation. Indeed, co-transfection of these constructs (Fig. S5A-C) into GFP-expressing 
HEK293T cells executed simultaneous upregulation of one gene (CD9) and downregulation of 
another gene (GFP) (Figs. 2H, S5D-E). No gene was modulated in cells that only took up one of 
the constructs. We next simultaneously activated two transcription factors (TBX6, SP5) and 
repressed two others (SOX2, NANOG) in human induced pluripotent stem cells (iPSCs), as 
measured by scRNA-seq (Figs. 2I, S5F-H). Thus, this design allowed simultaneous activation 
and repression with minimal cell-to-cell heterogeneity.  

Taken together, we developed three CRISPR-based systems for the simultaneous activation 
and repression of multiple genes. Each system has unique advantages and disadvantages (Fig. 
2J), enabling users to choose the system that best matches their design specifications. 
 
Mechanisms of multi-gene regulation 
We asked, using these multi-gene control systems, do individual cells modulate all target genes 
or does each cell only modulate some subset? Using a Wilcoxon signed rank test on scRNA-seq 
data (Methods), we found that many individual cells modulate all target genes (Fig. S6A-C). But 
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the efficiency of multi-gene modulation was roughly equal to the multiplication product of how 
efficiently each individual target gene was modulated (Fig. S6D-F): A poorly performing gRNA 
reduces not only the modulation magnitude per cell but also the percentage of modulated cells20 
(Fig. S1E-F). Thus, if some target genes are inefficiently modulated, multi-gene modulation may 
become patchy. For example, using our dCas9/dCas12a system (Fig. 2G), NANOG repression 
was more efficient than SOX2 repression (Figs. 2I, S5G). So some cells repressed NANOG but 
not SOX2 (Fig. S6G-I). Importantly, though, cells that modulated one gene were not less likely to 
simultaneously modulate another gene (Fig. S6D-F). In fact, cells were slightly more likely to 
modulate all target genes than subsets (Fig. S6D-F). We did find, though, that gene modulation 
efficiency was less efficient the more genes were targeted, consistent with dilution of available 
dCas protein (Fig. S6J). We later found that this effect could be counteracted by increasing the 
expression level of dCas genes (Fig. S12A-B). 

Transcriptional bursting can be analyzed using Smart-seq data33, but how bursting is affected 
by CRISPR-based gene modulation is not known. Interestingly, for the target genes we studied, 
we found that CRISPR interference (CRISPRi, using dCas9-KRAB and dCas12a-KRAB) primarily 
acted by reducing transcriptional burst frequency, while burst size surprisingly increased slightly, 
possibly as a compensatory mechanism (Fig. S7A-B). CRISPRa (with dCas12a-miniVPR) 
primarily increased burst size (Fig. S7C-D). And we found evidence that dCas12a-miniVPR 
binding can shift the transcriptional start site slightly downstream, possibly due to steric effects 
(Fig. S7E). Cas13d-mediated repression was caused by a reduction in burst size but not 
frequency, consistent with Cas13d’s role as an mRNA-targeting enzyme (Fig. S7F). Interestingly, 
Cas13d-cleaved transcripts lingered in the cell long enough to be detectable in our scRNA-seq 
dataset, including in the form of partial transcripts missing the first few exons. (Fig. S7G-I). Finally, 
Pol. III-transcribed CRISPR arrays were poly-adenylated and captured in our sequencing libraries 
(Fig. S7J-K), with possible implications for future multiplexed CRISPR screening. 
 
The PreciCE algorithm: A machine learning multi-gene prediction tool for data-driven cell fate 
conversion 
To make precision cell fate control data-driven, we developed an algorithm that uses scRNA-seq 
data of a desired starting and target cell type as input (Fig. 3A). We call our model the PreciCE 
algorithm, and it operates as follows (Methods). First, it reconstructs transcriptional networks 
underlying these cell types (Fig. 3B. Users can choose to reconstruct transcriptional networks 
purely based on the input data or use a pre-generated network). It then trains a predictive model 
of gene expression following a combinatorial genetic perturbation by parameterizing the network 
edges. This model is then inverted to identify which transcription factors should be simultaneously 
activated and repressed to achieve an optimal transition from the starting cell state to the target 
cell state (Fig. 3C). To demonstrate, we used the PreciCE algorithm to predict a gene perturbation 
set for converting pluripotent stem cells (starting state) into mesoderm cells (target state), using 
a publicly available scRNA-seq data as input34. The algorithm’s output consists of a ranked list of 
transcription factors most likely to convert the starting state into the target state (Fig. 3D). This 
ranking is cumulative: each transcription factor should be perturbed together with all higher-
ranking transcription factors. Each gene has a directionality of perturbation (upregulation: “↑”, 
downregulation: “↓”). A Precision Score (Fig. 3D) represents the algorithm’s estimate of how close 
the suggested perturbation will bring the starting state to the target state, and it increases 
cumulatively as more genes are included in the perturbation set. Each gene’s ranking reflects its 
overall effects on the transcriptional network – not merely its differential expression magnitude or 
how many downstream target genes it directly regulates (Fig. 3E). For example, MIXL1 
(excluded) is predicted to regulate more genes than TBX6 (included). But MIXL1 is not top-ranked 
because it is predicted to be modulated as a secondary effect when TBX6 is modulated. As the 
Precision Score levels off, further perturbations are predicted to make little difference to the 
outcome. 
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Crucially, the algorithm’s output includes both activation and repression. This is key, as 
activation of some transcription factors may cause broad, unwanted network perturbations. The 
PreciCE algorithm can compensate for such effects by modulating other genes, thus fine-tuning 
the network perturbation. As the algorithm searches for an optimal solution to the transcriptional 
network perturbation problem, it varies λ, a regularization parameter, across a wide range of 
values. As λ decreases, the predicted perturbation effect changes, increasing the precision of the 
network perturbation and enabling transcription factor ranking (Fig. 3F). The algorithm’s 
reconstructed network can be visualized, e.g., using pre-existing online tools. This enables users 
to inspect the effects of predicted perturbations (Fig. 3G). Furthermore, we standardized the data 
pre-processing workflow (Fig. S8A). Importantly, to make the model robust and generalizable 
across contexts, the PreciCE algorithm uses many simplifying assumptions (Methods). 

We developed a website (https://precice.stanford.edu) where users can run the PreciCE 
algorithm by drag-and-dropping scRNA-seq datasets, choosing one of our pre-computed gene 
regulatory networks, and selecting desired starting cell types, target cell types, and undesired 
competing lineages. 

Given that no other algorithms predict the simultaneous up- and downregulation of multiple 
genes, we first validated our algorithm’s predictions by testing consistency across multiple 
scRNA-seq datasets. Across three different datasets of pluripotent stem cells (starting state) and 
mesoderm (target state)34,35, and this study (Methods), the PreciCE algorithm predicted [SOX2↓ 
TBX6↑] as the most top-ranked perturbation, despite differences in species (mouse/human) and 
origin (in vitro/in vivo) (Figs. 3H, S8B-C). Lower-ranking genes differed. Thus, the PreciCE 
algorithm showed robustness across datasets but also sensitivity to the nature of the input data. 

We next found that the PreciCE algorithm predicted a perturbation for the forced conversion 
of cardiac fibroblasts to pluripotent stem cells [SOX2↑ NANOG↑ HAND1↓ HES6↑ 
POU5F1/OCT4↑] (Fig. S8D). Many genes were plausible based on the literature36,37, and we 
therefore proceeded to test algorithm predictions experimentally.   
 
The PreciCE algorithm can predict regulators of developmentally specific cell states 
The PreciCE algorithm’s consistently high ranking of [TBX6↑] for pluripotent-to-mesoderm 
conversion (Fig. 3H) was unexpected. To our knowledge, TBX6 has only been shown in one 
study to drive mesoderm differentiation38. Thus, a suitable first validation experiment was to see 
if [TBX6↑] could drive mesoderm conversion as efficiently as more well-established mesoderm 
transcription factors such as MESP1, TBXT (T/BRACHYURY), and MIXL1. Our computationally 
reconstructed gene network suggested these and other pro-mesoderm genes would be 
upregulated as a result of TBX6 upregulation (Fig. 3G). 

We performed transient CRISPRa-based activation of TBX6 or MESP1 or TBXT or MIXL1 in 
iPSCs (Fig. 4A, S9A, Methods) using transfection (using the dCas9/dCas12a system, to make 
results comparable to later differentiation experiments using this system). As a positive control, 
we performed a small-molecule-based protocol for cardiomyocyte formation (Fig. S9B-C)39, 
collecting cells for scRNA-seq at a time point when mesoderm cells had formed (Fig, S9D-E). 
Three days after transfection of the CRISPR constructs, a fraction of cells had differentiated into 
cells whose transcriptomes computationally clustered together with those of mesoderm cells from 
the positive-control condition (Fig. S9F) and expressed mesoderm/mesendoderm markers (e.g., 
PDGFRA, EOMES, TBXT, MSX1, MESP1, MIXL1). Interestingly, the [TBX6↑] perturbation had 
generated as many such mesoderm cells as [MESP1↑] (17%). This was more than [TBXT↑] (5%) 
or [MIXL1↑] (0%) (Fig. 4B), indicating that the PreciCE algorithm had accurately predicted TBX6 
as an unconventional mesoderm-inducing transcription factor. The relatively low percentage of 
differentiation was later improved by enhancing gene modulation efficiency (Fig. S12A-B).  

Interestingly, the cells produced by [TBX6↑] and [MESP1↑] looked different from one another, 
the most striking difference being that the [MESP1↑]-induced cells were larger (Fig. 4C). We 
found that [TBX6↑]-induced cells expressed higher levels of markers associated with early 
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mesoderm/mesendoderm (e.g., EOMES, TBXT, MIXL1, and even MESP1) whereas the 
[MESP1↑]-induced cells had higher levels of markers associated with late mesoderm and 
cardiomyocyte differentiation (e.g., NKX2.5, MYH7, MYL7, TNNI1) (Fig. 4D). Interestingly, this 
made the [TBX6↑]-induced cells more similar to the cells that had been used as input to the 
PreciCE algorithm34 (Fig. 4E). The [MESP1↑]-induced cells, in contrast, most resembled later-
stage mesoderm found in the same dataset but not used as input to the PreciCE algorithm (Fig. 
4D-E). This suggested that the PreciCE algorithm predicted an unconventional gene capable of 
driving the formation of mesoderm matching the developmental stage in the input data (nascent, 
cardiogenic mesoderm), consistent with a previously described role of TBX638.  
 
Data-driven multi-gene control improves efficiency and precision of cell fate engineering and 
enables cell fate logic operations 
Encouraged by these results, we asked whether PreciCE could improve cell conversion precision 
as measured by scRNA-seq. We again used the conversion of iPSCs to mesoderm34 as our 
experimental system (Fig. 3D). As predicted by the PreciCE algorithm, we performed [SOX2↓ 
TBX6↑ NANOG↓ SP5↑] in iPSCs using our dCas9/dCas12a system (Fig. S10A), together with 
several control perturbations for comparison ([TBX6↑], [TBX6↑ SP5↑], [SOX2↓ NANOG↓], [Non-
targeting]). Using transfection, gene modulation was transient (CRISPRa: 2-3 days, CRISPRi: ≥5 
days, Fig. S10B-C). Observing differentiation (Fig. S10D-E), we sorted cells for scRNA-seq by 
Smart-seq3xpress 96 hours post-transfection (without gating for CRISPR construct expression, 
Methods) (Fig. S10F). 

We clustered cells from all experimental groups together to gain a global overview of the 
dataset. At this time point, we observed mesoderm (MESP1+, MSX1+), including both cardiogenic 
(TMEM88+, HAND1+, TNNI1+) and endothelial mesoderm (PECAM1+, KDR+), endoderm 
(SOX17+, FOXA2+, HNF1B+), and two clusters of residual pluripotent stem cells (NANOG+, 
SOX2+, POU5F1+), termed “iPSC 1” (NANOGhigh) and “iPSC 2” (NANOGlow, EOMES+) (Figs. 5A, 
S10G-H). Endoderm and endothelial cells had not been present in the PreciCE algorithm’s input 
data so we classified these and residual stem cells as undesired heterogeneity. Using this 
dataset, we asked fundamental questions about PreciCE’s performance. 

First, we asked, is undesired cell fate heterogeneity reduced by increasing the number of 
perturbed genes? The answer was yes. We compared the [TBX6↑] and [TBX6↑ SP5↑] 
perturbations (Fig. 3D). The addition of [SP5↑] almost completely abolished undesired endothelial 
cell formation (5% vs 29% endothelial cells of all differentiated cells), though undesired endoderm 
cells were still present (23% vs 29% endoderm cells of all differentiated cells; Fig. 5B). This was 
consistent with SP5 being expressed by mesoderm and endoderm cells but not by endothelial 
cells (Fig. S10J). In effect, the addition of [SP5↑] amounted to a logical A AND B AND NOT C 
gate, enabling (Mesoderm) AND (Endoderm) AND NOT (Endothelial) specification. 

Second, we asked, is cell conversion more efficient by actively blocking the starting cell state? 
Here, too, the answer was yes. We compared the [TBX6↑ SP5↑] and [TBX6↑ SP5↑ SOX2↓ 
NANOG↓] perturbations and found that the latter improved mesoderm formation 3.6-fold (Fig. 
5C), effectively executing (Mesoderm) AND (Endoderm) AND NOT (Endothelial) AND NOT 
(Pluripotent stem cells) logic. Yet undesired endoderm cells still remained (Fig. 5C).  

Third, therefore, we asked, can heterogeneity be further reduced by actively blocking closely 
related but undesired lineages? Here, again, the answer was yes. To actively block endoderm 
formation, we used the PreciCE algorithm and set endoderm as starting state and mesoderm as 
target state. We combined this endoderm-to-mesoderm output (S10L-M) with our pluripotent-to-
mesoderm output to generate the perturbation set [TBX6↑ SP5↑ SOX2↓ FOXA2↓ SOX17↓] (Fig. 
5D). We analyzed the outcome using RT-qPCR against MESP1 and HNF1B, genes almost 
exclusively expressed in the mesoderm and endoderm lineages, respectively (Fig. S10N-O). 
[TBX6↑ SP5↑ SOX2↓ FOXA2↓ SOX17↓] indeed successfully reduced endoderm formation (Fig. 
5E), without reducing mesoderm formation (Fig. 5F), effectively executing (Mesoderm) AND NOT 
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(Endothelial) AND NOT (Pluripotent stem cells) AND NOT (Endoderm) logic. This demonstrated 
that data-driven multi-gene control can enable rational and programmable repression of undesired 
cell fates (Fig. 5G).  

To demonstrate the generalizability of PreciCE, we conversely sought to guide cells toward 
endoderm while this time repressing mesoderm. Indeed, guided by the PreciCE algorithm (Fig. 
5H, S11A-B), a perturbation for (Endoderm) AND NOT (Mesoderm) ([FOXA2↑ SOX2↓ TBX6↓]) 
converted iPSCs into endoderm while selectively blocking formation of mesoderm (Figs. 5I-J, 
S11C-D). Interestingly, the ability of [FOXA2↑] to convert iPSCs into endoderm was completely 
dependent on the simultaneous repression of SOX2 (Fig. S11E). This was different from iPSC-
to-mesoderm conversion, where [TBX6↑] had been able to convert iPSCs into mesoderm even in 
the absence of [SOX2↓], albeit inefficiently (Figs. 4C, 5B, S11F). This demonstrated the crucial 
importance of repressing the starting cell state for unlocking the cell programming action of some 
transcription factors, such as FOXA2. 

Taken together, these findings demonstrate that data-driven multi-gene control with PreciCE 
can improve both cell conversion efficiency (by blocking the starting cell state) and reduce 
heterogeneity (by modulating many genes at once and/or actively blocking competing cell 
lineages), thus laying the foundation for powerful data-driven cell fate engineering applications. 

In parallel, we discovered that cell conversion efficiency could be dramatically enhanced by 
expressing the Cas genes under the strong CAG promoter instead of the relatively weak hPGK 
and EFS promoters used for earlier experiments (Fig. S12A-B), demonstrating that Cas gene 
expression levels markedly influence performance of the PreciCE toolbox. 

 
Engineered iPSC lines enable user-friendly execution of multi-gene modulation  
To facilitate use by other researchers, we generated iPSC lines carrying each of the three multi-
gene control systems genomically integrated into the AAVS1 safe-harbor locus and inducible 
through doxycycline administration (Fig. S12C-G). We used one of these lines (Fig. S12G) to 
show that a multi-gene differentiation program (to mesoderm) could be triggered through the 
simple addition of doxycycline to the cell culture medium (Fig. S12H). 

 
Discussion 
We here describe a method for data-driven precision cell fate control and demonstrate that it can 
be used to improve precision in cell conversion experiments. Specifically, we find that (1) multi-
gene perturbation, guided by a uniquely tailored prediction algorithm, can achieve more precise 
cell states than single-gene perturbation, (2) simultaneous gene activation and repression 
enhances precision by actively blocking undesired cell states, (3) the seamless interface between 
computational prediction and experimental multi-gene control enables rational engineering of cell 
identity. 

Our three multi-gene control systems (Fig. 2) give users the flexibility to choose the system 
that best matches their needs. Guide-RNA design and choice are crucial for the success of 
PreciCE experiments. The number of genes being modulated may dictate use of Pol. III-  (≤~10 
gRNAs) or Pol. II-transcribed (>10 gRNAs) single arrays. Desired duration of gene repression 
may favor mRNA-targeting (Cas13d) or epigenetic (dCas12a, dCas9)-based systems. A desired 
delivery method may favor a single-array (Cas13d/dCas12a, As-/Lb-dCas12a) or two-construct 
all-or-none (dCas9/dCas12a) design. And cell type-specific effects40 or collateral activity25 may 
restrict a user’s choice of system. Many validated gRNAs and gRNA design tools exist for dCas9, 
facilitating its use. On the other hand, when no validated gRNAs exist, the ability of dCas12a and 
Cas13d to encode multiple gRNAs on a single array can make gene modulation more predictable. 
Some of the systems’ features are interchangeable. For example, a two-construct all-or-none 
architecture can be used for the Cas13d/dCas12a hybrid system. And a dCas12a activator can 
be replaced with a dCas9 activator. Importantly, the use of engineered hybrid CRISPR arrays 
greatly simplifies the engineering of multi-gene networks, enabling the delivery of multi-gene 
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programs as single data packets. This can reduce heterogeneity caused by variations in gRNA 
delivery and expression efficiency, as often seen with previous dCas9-based methods.  

Recent advances on defining novel transcriptional and epigenetic effectors provide a 
reservoir of useful molecules that can be modularly integrated into the PreciCE platform. For 
example, researchers can use novel epigenetic activators (e.g., TET141,  p30042, NFZ43) or 
repressors (DNMT44, ZIM3-KRAB45, etc.) for simultaneous activation and repression. These 
effectors can perform new modes of regulation (e.g., long-duration silencing), thus expanding the 
functionality of PreciCE. 

The success of PreciCE relies on using efficient gRNAs. Combining multiple non-optimal 
gRNAs into a single array could fail to cause any gene modulation. In this regard, one major 
benefit of the single-array-based gRNA expression is the ability to encode multiple gRNAs 
targeting the same gene on a single array, thus circumventing time-consuming gRNA 
optimization. Furthermore, the single-array system has great potential for large-scale multiplexed 
screening. Pooled arrays can be synthesized, each encoding desired activating guides and 
repressive guides in pre-defined stoichiometry, enabling elucidation of genetic networks in novel 
ways.  

Natural differentiation often, though not always46, proceeds through a series of transient 
intermediate states. Currently, the PreciCE algorithm is only fed information about starting and 
target cell states. This may impact the ability to execute conversions to developmentally distant 
target states that may involve multiple intermediate stages. However, combining PreciCE with 
other cell differentiation protocols and activating the PreciCE algorithm’s predicted gene set 
during crucial moments in a cell’s differentiation trajectory may enhance precision with current 
protocols. 

The PreciCE algorithm requires using pure starting and target populations as input. If the 
input is a heterogeneous mix of cell types (e.g., clustering together in a UMAP), the algorithm’s 
prediction will be based on that mix. One reason we observed undesired endoderm cells in our 
mesoderm conversion was likely that the input data expressed not only mesoderm markers but 
also earlier mesendoderm markers. Furthermore, the algorithm is sensitive to noise, especially 
caused by very small datasets. This manifests in the form of networks with noisy or incorrect 
edges as well as genes that may get overlooked in the differential expression due to batch effects 
or other experimental artifacts. In our experience, the starting and target cell types should each 
contain at least several hundred cells. 

Collectively, these findings establish PreciCE as a powerful platform for data-driven cell fate 
engineering. By leveraging growing databases from cell atlases, PreciCE could become an 
essential asset in the generation of human cells on demand and help transform the manipulation 
of cell identities into a rational and programmable discipline. 
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Methods 
CRISPR-based multi-gene control experiments 
dCas12a gene. We used nuclease-deactivated hyper-Cas12a derived from Lachnospiraceae 
bacterium21 followed by an activator or repressor, and GFP or mCherry. For the Lb-dCas12a/As-
dCas12a system, we used enhanced-dCas12a from Acidaminococcus species48. 
  
Cas13d gene. We used Ruminococcus flavefaciens Cas13d22. 
  
dCas9 gene. We used nuclease-deactivated Streptococcus pyogenes Cas949 fused to a 
repressor domain and mCherry.  
 
HEK293T cells. For development of the CRISPR-based multi-gene control systems (Fig. 2), we 
used HEK293T cells from Takara Bio (Japan) carrying (1) a lentivirally integrated GFP tagged to 
a PEST degradation domain (enabling rapid protein dynamics suitable for gene repression 
experiments) expressed under a TRE3G promoter, and (2) a reverse tetracycline transactivator 
(Rtta) expressed under the strong constitutive EF1ɑ promoter, enabling rapid GFP expression 
through addition of doxycycline to the culture medium. These cells showed low but detectable 
GFP expression even in the absence of doxycycline, enabling us to test Cas13d-based gene 
repression without inducing collateral activity. 
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iPSCs. We used iPSC line SCVI-480, kindly provided by Joseph C. Wu, MD, PhD at the Stanford 
Cardiovascular Institute funded by NHLBI BhiPSC-CVD 75N9202D00019. These cells were 
derived from blood cells drawn from a healthy, 18-year-old woman of African American descent, 
with consent for research use. All experimental procedures were approved by Stanford’s Stem 
Cell Research Oversight (SCRO) panel. 
   
Cell culture of HEK293T cells. Cells were grown in DMEM with high glucose (4.5 g/L), 
GlutaMAX, and pyruvate (Gibco; 10569-010) supplemented with 10% fetal bovine serum (Sigma-
Aldrich, St. Louis, MO, USA; F7524-500ML) and 1% penicillin-streptomycin (Gibco; 15070063). 
For passaging, cells were dissociated with TrypLE (Thermo Fisher; 12604039). 
  
Cell culture of hiPSCs. Cells were grown in 6-well plates coated with Laminin-521 (BioLamina, 
Sundbyberg, Sweden; 17187501) according to BioLamina’s protocol (1/10 dilution in PBS for 2 
hr). Cells were kept in mTeSR Plus (Stemcell Technologies; 17187501), which was changed 
daily. For passaging, cells were dissociated with Accutase (Corning Inc., Corning, NY, USA; 
15323609) followed by addition of 1 volume of mTeSR Plus containing 1x RevitaCell Supplement 
(Gibco; A2644501). Cells were transferred to a 15 ml Falcon tube and centrifuged at 300*g for 4 
minutes. Thereafter, supernatant was removed, 2 ml new mTeSR Plus containing RevitaCell 
Supplement was added. Cells were counted using a Countess 3 Automated Cell Counter (Thermo 
Fisher) by performing four counts on the same chip and using the average cell number to increase 
seeding precision. We seeded 150,000 or 300,000 cells per well in a 6-well plate in mTeSR Plus 
containing RevitaCell Supplement. For subsequent medium changes, RevitaCell Supplement 
was excluded. Cell cryopreservation was performed using BamBanker (Fujifilm Wako, Neuss, 
Germany; 306-14684). 
  
Cell differentiation using a small-molecule (CHIR99021) protocol. For mesoderm 
differentiation using small molecule CHIR99021, we adapted a previously published protocol57. 
Briefly, wells in a 24-well plate were coated with Laminin-521 (BioLamina, LN521-02; Thermo 
Fisher, #A29249) at 1/10 dilution in PBS for 2 hr at 37°C. iPSCs were seeded at a density of 
100,000 cells per well in mTeSR Plus (#100-0274 containing supplement #100-0275, STEMCELL 
Technologies, BC, Canada), containing 1x RevitaCell Supplement (#A2644501, Thermo Fisher). 
Twenty-four hr after seeding, medium was changed to mTeSR Plus without RevitaCell 
Supplement. Forty-eight hr after seeding, medium was changed to RPMI supplemented with L-
glutamine and HEPES (#22400089, Gibco, MT, USA) and 1x B27-minus-insulin (#A1895601, 
Gibco) and containing 10 µm CHIR99021 (#SML1046, Sigma-Aldrich, MO, USA). Exactly 72 hr 
after seeding, medium was changed to RPMI (with L-glutamine and HEPES) containing 1x B27-
minus-insulin, but without CHIR99021. Ninety-six hr after seeding, cells were dissociated and 
FACS-sorted for scRNA-seq. 
  
Cell differentiation using CRISPRa/CRISPRi. For mesoderm differentiation using single-gene 
upregulation (Fig. 4), we used the dCas9/dCas12a system (Fig. 2G; “Experiment #23-006”) to 
make results comparable to subsequent differentiation experiments, even though no dCas9-
based gene repression was performed in this experiment. We targeted each gene with 5 dCas12a 
gRNAs in a single array. We co-transfected iPSCs with the dCas12a-Activator and dCas9-
Repressor constructs using reverse transfection. Twenty-four hr after transfection, medium was 
changed to RPMI supplemented with L-glutamine and HEPES (#22400089, Gibco, MT, USA) and 
1x B27-minus-insulin (#A1895601, Gibco). Forty-eight hr after transfection, medium was again 
changed to RPMI containing B27-minus-insulin. Seventy-two hr after transfection (a time point 
where pilot experiments showed MESP1 upregulation and morphological changes, both 
suggestive of mesoderm differentiation), cells were dissociated and resuspended in PBS 
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containing RevitaCell Supplement and FACS-sorted into 384-well plates for scRNA-seq (see 
below), gating for GFP and mCherry present on the dCas12a-Activator and dCas9-Repressor 
constructs, respectively.  

For mesoderm and endoderm differentiation using multi-gene up- and downregulation (Fig. 5; 
“Experiment #23-001”), we used the dCas9/dCas12a system (Fig. 2G) similar to the setup in the 
previous paragraph. But instead of changing to RPMI + B27-minus-insulin medium already 24 hr 
post-transfection, we instead changed to mTeSR Plus (without RevitaCell Supplement) 24 hr 
post-transfection. At 48 and 72 hr post-transfection, we changed medium to RPMI + B27-minus-
insulin. At 96 hr post-transfection (a time point where pilot experiments showed MESP1 
upregulation and morphological changes (both suggestive of mesoderm differentiation), cells 
were analyzed, either by dissociation and FACS-sorting for scRNA-seq, or by lysis and 
downstream processing for RT-qPCR. For Fig. 5A-C, we sorted cells without gating for the 
fluorescent proteins fused to the Cas protein, as these protein constructs had largely been diluted 
out by cell division at this time point. 
 
Generation of scRNA-seq libraries. We generated scRNA-seq libraries using the Smart-
seq3xpress method and sequenced on a DNBSeq-G400RS platform (MGI, Shenzhen, China), as 
described in ref.26, using either HotMPS or StandardMPS chemistry. Smart-seq3xpress involves 
cell sorting by FACS into 384-well plates and downstream processing to achieve full-transcript 
coverage. We generated scRNA-seq datasets from the following experiments, using the following 
specifications: 

(1) Cas13d/dCas12a hybrid array testing in HEK293T cells (Figs. 2C, S3); “Experiment 
#22-001”): Forty-eight hr post-transfection, cells were dissociated and stained with an A647-
conjugated antibody against the target gene product CD9 (#341648, BD Biosciences, Franklin 
Lakes, NJ, USA). Cells were suspended in PBS and FACS sorting was done using a BD Influx 
(BD Biosciences, Franklin Lakes, NJ) using a 140-um nozzle. Cells were sorted for uptake of the 
CRISPR array plasmid (BFP) and dCas12a-miniVPR and Cas13d plasmids (mCherry) and CD9-
A647high expression. During library preparation, we performed 12 cycles of pre-amplification PCR 
and 12 cycles of index PCR and used 0.002 ul TDE1 Tn5 enzyme per cell (Illumina Tagment DNA 
TDE1 Enzyme and Buffer Kits; Illumina, San Diego, CA, USA). Sequencing was performed using 
an SE100 sequencing kit (MGI). After sequencing and quality-control, the dataset consisted of 
688 cells. 

(2) Lb-dCas12a/As-dCas12a hybrid array testing in HEK293T cells (Fig. 2F; “Experiment 
#24-019”): Forty-eight hr post-transfection, cells were dissociated and suspended in PBS 
containing a live/dead marker (NucRed Dead 647; Thermo Fisher). FACS sorting was done using 
a BD FACS Melody (BD Biosciences) using a 100-um nozzle. Cells were sorted based on Lb-
dCas12a-mCherry-KRAB expression and low fluorescence of the Live/Dead marker. During 
library preparation, we performed 12 cycles of pre-amplification PCR and 12 cycles of index PCR 
and used 0.003 ul TDE1 Tn5 enzyme per cell. Sequencing was performed using a PE100 
sequencing kit (MGI). After sequencing and quality-control, the dataset consisted of 1334 cells. 
However, because our BD FACS Melody was not equipped with a UV laser, we had been unable 
to sort for cells expressing the As-dCas12a-VPR-BFP construct. We therefore subsetted the 
dataset to include only cells expressing high levels of the As-dCas12a-VPR-BFP (>100 reads per 
cell), yielding a final dataset of 543 cells. 

(3) dCas9/dCas12a all-or-none architecture testing in HEK293T cells (Fig. 2I; “Experiment 
#24-022”): Forty-eight hr post-transfection, cells were dissociated and suspended in PBS. FACS 
sorting was done using a BD FACS Melody (BD Biosciences) using a 100-um nozzle. Cells were 
sorted based on dCas9-mCherry-KRAB expression and dCas12a-miniVPR-GFP expression. 
During library preparation, we performed 12 cycles of pre-amplification PCR and 12 cycles of 
index PCR and used 0.004 ul TDE1 Tn5 enzyme per cell. Sequencing was performed using a 
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PE100 sequencing kit (MGI). After sequencing and quality-control, the dataset consisted of 1003 
cells. 

(4) iPSC-to-mesoderm differentiation using CHIR99021 (Figs. 3H, 4, S9 “Experiment #24-
010”): See experimental settings in the Small-molecule mesoderm differentiation section. At the 
end of the experiment (96 hr post-seeding), cells were dissociated and suspended in PBS 
containing DAPI (4 µg/ml) as a live/dead marker. FACS sorting was done using a BD Influx (BD 
Biosciences) using a 140-um nozzle. During library preparation, we performed 12 cycles of pre-
amplification PCR and 12 cycles of index PCR and used 0.003 ul TDE1 Tn5 enzyme per cell. 
Sequencing was performed using a PE100 sequencing kit (MGI). After sequencing and quality-
control, the dataset consisted of 476 cells. 

(5) iPSC differentiation using [TBX6↑] and [MESP1↑] and [MIXL1↑] and [TBXT↑] (Figs. 4, 
S8; “Experiment #23-006”): See experimental settings in the Differentiation using 
CRISPRa/CRISPRi section. At the end of the experiment (72 hr post-transfection), cells were 
dissociated and suspended in PBS containing DAPI (4 µg/ml) as a live/dead marker. FACS sorting 
was done using a BD Influx (BD Biosciences) using a 140-um nozzle, gating for dCas9-mCherry-
KRAB expression and dCas12a-miniVPR-GFP expression. During library preparation, we 
performed 12 cycles of pre-amplification PCR and 12 cycles of index PCR and used 0.003 ul 
TDE1 Tn5 enzyme per cell. Sequencing was performed using a PE100 sequencing kit (MGI). 
After sequencing and quality-control, the dataset consisted of 1179 cells. We further 
computationally subsetted the dataset by including only cells that contained ≥1 read of any 
transfected construct, yielding a final dataset of 717 cells. 

(6) iPSC differentiation using [TBX6↑] and [TBX6↑ SP5↑] and [SOX2↓ NANOG↓ TBX6↑ 
SP5↑] and [SOX2↓ NANOG↓] (Figs. 5A-C, S10; “Experiment #23-001”): See experimental 
settings in the Differentiation using CRISPRa/CRISPRi section. At the end of the experiment (96 
hr post-transfection), cells were dissociated and suspended in PBS containing DAPI (4 µg/ml) as 
a live/dead marker. FACS sorting was done using a BD Influx (BD Biosciences), using a 140-um 
nozzle. Because transfected plasmids have largely been diluted out at this time point, we did not 
gate for expression of dCas9-mCherry-KRAB or dCas12a-miniVPR-GFP. This meant that many 
sorted cells were untransfected. During library preparation, we performed 12 cycles of pre-
amplification PCR and 12 cycles of index PCR and used 0.002 ul TDE1 Tn5 enzyme per cell. 
Sequencing was performed using a SE100 sequencing kit (MGI). After sequencing and quality-
control, the dataset consisted of 2959 cells. 
 
Flow cytometry. We performed flow cytometry and sorting using BD FACSMelody (100-µm 
nozzle) or BD Influx (140-µm nozzle) or BD FACSAria Fusion (100-140-µm nozzle) (BD 
Biosciences). We also used CytoFLEX (Beckman Coulter, Brea, CA) for analysis. FlowJo v.10.7.1 
was used for data processing. 
 
RT-qPCR. When collecting cells for RT-qPCR, cells were dissociated in bulk and were thus not 
sorted based on uptake of CRISPR constructs. An exception was the Cas13d/dCas12a system 
(Fig. S2U), where samples were FACS-sorted into lysis buffer. RNA was extracted using the 
RNeasy Plus Mini Kit (Qiagen, Germany), as recommended by the manufacturer. gDNA removal 
was performed using TURBO DNA-free kit (Thermo Fisher) after RNA extraction. Reverse 
transcription was performed using Maxima H Minus Reverse Transcriptase (Thermo Fisher). 
Quantitative PCR reactions were run on a ViiaA 7 Real-Time PCR System (Applied Biosystems, 
MA, USA) using Power SYBR Green PCR Master Mix (Thermo Fisher). ACTB was used as 
reference gene. All expression values were calculated using each sample’s own ACTB value as 
reference, and “expression relative to ACTB” (2-dCt) was used for all plots. 
 
scRNA-seq computational analysis 
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Primary data processing. zUMIs58 (v.2.8.2 or newer) was used to process raw FASTQ files as 
described in ref.26. 
 
Quality control. After sequencing and read mapping, a reads-per-cell versus percent-exonic-
reads plot informed exclusion of failed libraries. 
 
Differential expression. For calculating CRISPRa/i-based expression fold-change for scRNA-
seq data (Fig. 2C, F, I), we compared pseudobulk expression level in the following way. We 
summed all sequencing reads for all cells expressing the targeting gRNA and divided this by the 
corresponding number for cells expressing non-targeting gRNAs. We chose this method as it best 
approximates how RT-qPCR-based expression fold-change is measured. 
 
Heatmaps (Fig. 2C, F, I). Heatmaps were plotted in R using the Heatmaply package (v.1.5.0)59, 
using data matrices containing all reads (as opposed to UMI-only). Note that cells were not 
hierarchically clustered but listed in arbitrary (alphabetical) order. 
 
Violin plots (Figs. S3C, S4J, S5G). We plotted violin plots in R using the ggplot2 package 
(v.3.5.0)68. Plots were made using expression data of all reads (as opposed to only UMI reads).  
 
UMAP and dataset integration. UMAPs were produced using Seurat v. 5.0.160 using expression 
matrices of all reads or UMI reads and the 2000 most variable genes. For integrating the two 
datasets in Fig. S9F (small-molecule-mediated differentiation and CRISPRa-mediated 
differentiation) using Seurat, we split the datasets by experimental condition and integrated using 
the JointPCAIntegration method. 
 
Volcano plots (Figs. S3E, S4K, S5H). We performed differential expression analysis and plotted 
volcano plots in R using edgeR61. We arbitrarily set 1.5 as an expression fold-change cutoff for 
significantly expressed genes. Note that fold-change values for some genes differ dramatically 
from those in Fig. 2C, F, I, as Limma/Voom calculates fold-change differently when one value is 
zero or near-zero. 
 
Analysis of how many genes were perturbed in individual cells (Fig. S6). A scRNA-seq 
expression matrix was loaded into Python using Scanpy (v.1.10.2). Statistical analyses were 
performed using SciPy (v.1.14.0).  

First, we estimated how many genes were perturbed in individual cells (Fig. S6A-C). 
Conceptually, this analysis was done in the following way. For each of the 4-6 CRISPR target 
genes, we first looked at that gene’s “baseline” expression level in control cells expressing the 
non-targeting CRISPR array. That baseline level corresponded to a distribution of sequencing 
reads (e.g., Fig. S3C). We used this baseline expression distribution to set an arbitrary threshold, 
beyond which that gene would be considered “perturbed”. Having set such thresholds for all 4-6 
target genes, we then looked at each cell expressing the targeting CRISPR array (our 
experimental group). For each such cell, we asked if the first target gene was classified as 
perturbed. We next asked if that same cell had the second target gene perturbed, and the third, 
and so on. We repeated this procedure for all cells. Then, the number of genes classified as 
perturbed in each individual cell was plotted in Fig. S6A-C. Technically, the analysis was done 
using a one-sided Wilcoxon signed-rank test, generating p-values to assess statistical 
significance. We used the Benjamini–Hochberg procedure to create the significance threshold for 
determining if each gene was perturbed in any given cell. We performed bootstrapping by 
excluding 20% of samples per iteration randomly and sampling with replacement over 100 
iterations. Visualizations were performed using the Seaborn and Matplotlib libraries. 
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Note that on the scRNA-seq level, gene activation and repression do not generate binary on-
off expression patterns but rather shifts in sequencing read distributions (Figs. S3C, S4J, S5G). 
Therefore, this single-cell-level analysis has noise. For example, because of the sharp thresholds 
for when a gene would be considered perturbed, some control cells (expressing the non-targeting 
array) were also classified as perturbed for some genes (Fig. S6A-C). And because of zero-
inflation in scRNA-seq data, the number of targeting cells showing multi-gene perturbation is likely 
an underestimate. 

To analyze whether each individual cell showed some bias for or against regulating all 4-6 
target genes (Fig. S6D-F), we performed the following steps. First, given the thresholds described 
above (beyond which a target gene was considered perturbed), we analyzed how many percent 
of cells were classified as “perturbed” for each target gene. If target genes are independently 
modulated, the fraction of cells showing all genes perturbed should be equal to the multiplication 
product of these percentages. In the same way, we calculated the expected fraction of cells 
showing subsets of genes perturbed (Fig. S6D-F). We compared these expected fractions with 
the actual observed fractions to robustly and confidently analyze whether cells showed biases for 
or against multi-gene modulation on the single-cell level. 
 
Transcriptional bursting analysis. This analysis was performed as described previously 33. 
 
The PreciCE Algorithm 
Our goal was to design a computational model that leverages single-cell RNA-seq data from 
source and target cell populations to predict the most effective genes to perturb, identifying the 𝑘 
best genes for a successful transition where 𝑘 is a variable integer. Additionally, this model 
evaluates the efficiency of various perturbation combinations, facilitating the optimal selection of 
𝑘 based on resource constraints. 

Let 𝑔! be a gene whose expression is measured using single-cell RNA sequencing 
technology. Let 𝐺 be the set of all such genes and let 𝑇	 ⊂ 𝐺 be the set of all transcription factors. 
Let 𝒙 ∈ ℝ|#| be the vector of expression values for all genes in any given cell. We define 𝜃 ∈ ℝ|#| 
to be a perturbation to this expression vector containing at most |𝑇| non-zero values. The impact 
of this perturbation on the complete transcriptional state can be represented as 𝒙$, using a gene 
regulatory model 𝑓 that maps from ℝ|#| → ℝ|#|. 

	
𝒙$ = 𝑓(𝜃)	

 
Let 𝒙𝒔, 𝒙𝒕 ∈ ℝ|#| represent two distinct transcriptional states (the terms ’gene expression vector’ 
and ’transcriptional state’ are used interchangeably). Our goal is to transform the cell from state 
𝑥' to 𝑥( using a perturbation 𝜃3 that consists of only 𝑘 ≤ |𝑇| non-zero entries. This can be 
represented as the following optimization problem: 
 

𝜃3 = argmin
$
;<𝒙𝒔 + 𝑓(𝜃)> − 𝒙𝒕;	

 
Learning 𝑓 
Let 𝑇	 ⊂ 𝐺 be the set of all genes that code for transcription factors. We define 𝒗 ∈ ℝ|#| to be the 
expression values of transcription factors alone and zero elsewhere, that is 𝑣! = 𝑥! ⋅ 𝟙[𝑔! ∈ 𝑇] for 
all 𝑣! ∈ 𝒗, 𝑥! ∈ 𝒙. We also define the notation 𝒗(*+) which is equivalent� to 𝒗, except that 𝑣+ has 
been set to zero. 𝒗(*𝒋) = F𝑣., … , 𝑣+*., 0, 𝑣+/., … , 𝑣|#|I

0. Lastly, we define the gene regulatory model 
for a specific target gene 𝑔+ as 𝑓+ from ℝ|#| → ℝ. This elementwise formulation is useful for 
learning non-linear functions. 
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𝒙$ = 𝑓(𝜃) = [𝑓.(𝜃), 𝑓1(𝜃), … , 𝑓2(𝜃)]0 	
 
Subproblems 
This larger problem is composed of the following subproblems: 
 
1. Inferring an unweighted network of interactions between transcription factors and genes: 
Determine the matrix 𝐄 ∈ {0,1}|#|×|#| such that ∀𝑒!+ ∈ 𝐄, 𝑒!+ = 1 if gene 𝑔! has an impact on the 
expression of gene 𝑔+. In the simplest case, 𝑓 = 𝐄 ⋅ 𝜃 and the second step is not performed. 
 
2. Determining direct transcriptional relationships between transcription factors and genes: Given 
𝐄, determine 𝑓 (as defined previously). 
 
3. Identifying the minimal set of transcription factors to perturb to achieve the desired target state: 
Identify a sparse transcription factor perturbation vector 𝜃 such that ;<𝒙' + 𝑓(𝜃)> − 𝒙(; is 
minimized. 
 
While 1 and 2 seem closely related, they have historically been approached as separate problems 
with separate validation sets. Hence, we partition them as well. 
 

Symbol Definition 

𝐺 Set of all measurable genes 

𝑇 Set of all transcription factors 
𝑓 Gene regulatory model for all target genes that maps from ℝ|#| → ℝ|#| 
𝑓+ Gene regulatory model for a specific target gene 𝑔+  that maps from ℝ|#| → ℝ 
𝐱 Vector of gene expression values of all genes 

𝐯 Same as x with zeros everywhere except at transcription factors 

𝐯(*+) Same as v with zero at location 𝑗 

𝐄 |𝐺| × |𝐺| dimensional Boolean matrix, ∀𝑒!+ ∈ 𝐄, 𝑒!+ = 1 if 𝑔!  affects expression of 𝑔+ 

M |𝐺| × |𝐺| dimensional matrix, 𝑤!+ ∈ 𝐌 is the linear relationship between 𝑥! , 𝑥+ 
𝐱' Vector representing transcriptional state of source cell 

𝐱( Vector representing transcriptional state of target cell 

θ |𝐺|-dimensional vector representing a transcriptional perturbation 

𝐱$ Change in overall transcriptional state caused by perturbation θ 
𝐲 𝐱( − 𝐱', Change in expression between source and target state 
𝑘 Number of genes to perturb 

𝑑 min(diameter of network represented by E, length of smallest cycle) 

ϕ Set of learnable model parameters 
 
Approach 
We describe our methodology for the subproblems identified in the previous section. 
 
Inferring an unweighted network of interactions between transcription factors and genes 
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We use the GENIE3 package62 for this subproblem, specifically the GRNBoost2 implementation63, 
which has shown superior performance in the accuracy and consistency of detected gene 
regulatory network edges. 

GENIE3 breaks down the problem of recovering the underlying regulatory network into 
multiple subproblems of identifying regulators for particular genes. However, it does not define 
the direct transcription factor-gene transcriptional relationship (𝑓). It only creates a list of 
transcription factor and target gene pairs where each transcription factor has a significant impact 
on target gene expression (we capture this as 𝐸). By using an ensemble of regression trees, the 
model recursively splits the training data on each feature while maximizing entropy. The output is 
a ranking of features (transcription factors) by their importance for predicting the expression of 
the target gene. While the relationship 𝑓 between the transcription factors and the target genes 
could be inferred from this model, it’s usually a non-smooth function that would be difficult to 
optimize over for part (3). 

The SCENIC package64 further augmented the output from GENIE3 by filtering out 
interactions where the transcription factor binding motif is not significantly enriched upstream of 
the target gene sequence64. This ensures that each transcription factor is only connected to 
downstream genes that it directly interacts with and not those genes that may be indirectly 
impacted. We use this filtering to remove indirect or potentially spurious interactions between 
transcription factors and downstream genes and consider only those relationships that are 
validated by sequence information. 
 
Learning transcriptional relationships between transcription factors and genes 
In the following models, 𝜃 is a |𝐺|-dimensional vector representing any transcriptional perturbation 
and 𝑥$ is the resulting change in overall transcriptional state caused by 𝜃. 
 
Binary model: As defined previously, let E correspond to a Boolean matrix of all non-zero 
relationships between transcription factors and target genes (as determined by GENIE3). To 
prioritize interactions that are within a closer hop distance, we divide the magnitude of the 
perturbation at each hop by the number of hops so far (ℎ). This is similar to the procedure followed 
by ref. 13. Let 𝑑	 = min(diameter of the network defined by E, number of edges in the shortest 
cycle). We do not include self-edges. 
 

𝒙$ = \]
1
ℎ

4

56.

𝐄^ ⋅ 𝜃 

 
Linear model: Let 𝐌 ∈ ℝ|#|×|#| represent an adjacency matrix defining relationships between 
nodes 𝐺. Let 𝑤!+ ∈ 𝐌 represent the weight of an edge between gene 𝑔! and gene 𝑔+. 
 
Training function: 

𝐌_ = argmin
𝐌

1
|𝐺|

`ab𝐌 ⋅ 𝒗(*8) − 𝑥!b1
1
c

|#|

!6.

 

 
Inference function: 

𝒙$ = 𝐌_ 4 ⋅ 𝜃 
 
Multilayer perceptron: Let 𝑓9 represent a multilayer perceptron parametrized by the set of 
learnable parameters 𝜙. Let 𝑀. ∈ ℝ2!×|#|, 𝑀1 ∈ ℝ2"×2! , 𝑀: ∈ ℝ.×2" be weight matrices, where 
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𝑛., 𝑛1 are tuned hyperparameters (Setting for current results: 𝑛. = 20, 𝑛1 = 10). ReLU represents 
the elementwise ReLU operator. 
 
Training function: 

𝜙3 = argmin
9

1
|𝐺|

`ab𝑓!,9<𝒗(*8)> − 𝑥!b1
1
c

|#|

!6.

 

where 
𝑓!,<<𝐯(*!)> = 𝑀: ⋅ ReLU a𝑀1 ⋅ ReLU<𝑀. ⋅ 𝐯(*!)>c 

 
Inference function: 

𝒙$ = 𝑓9=(𝜃) = F𝑓.,9= (𝜃), 𝑓1,9=(𝜃), …𝑓|#|,9=(𝜃)I
0 

 
We compared the gene expression predictive performance of the different model formulations for 
𝑓 (Table 1), and chose to proceed with the linear formulation. 
 
Train Dataset Test Dataset # of cells Model RMSE R2 

Duan et al. (Heart) Duan et al. 1764 Binary 0.018 -0.296 

Duan et al.(Heart) Duan et al. 1764 Linear 0.010 0.491 

Duan et al. (Heart) Duan et al. 1764 MLP 0.023 0.326 

Duan et al. + Tabula Muris (Heart) Duan et al. 2417 Linear 0.010 0.453 

Duan et al. + Tabula Muris (Heart) Duan et al. 2417 MLP 0.013 0.410 

Duan et al. + Tabula Muris (5 organs) Duan et al. 23433 Linear 0.011 0.434 

Duan et al. + Tabula Muris (5 organs) Duan et al. 23433 MLP 0.014 0.416 

Table 1: Results for predicting target gene expression (𝑓). Average performance across 
models trained on 9000 random target genes (tasks). 
 
Identifying minimal set of transcription factors to perturb to achieve desired target state 
We set the difference in transcriptional state between the source (𝐱') and the target (𝐱() cell type 
to be 𝒚, where 𝒚 = |𝒙( − 𝒙'|. 

Our goal then is to identify 𝜃3 that minimizes the absolute difference ;𝒙𝒕 − <𝒙𝒔 + 𝑓(𝜃)>; =
|𝑓(𝜃) − 𝒚|. The solution must also satisfy the constraint that only 𝑘 genes must be non-zero, which 
is incorporated using 𝐿. regularization for enforcing sparsity in 𝜃. 
 

𝜃3 = argmin
$
(‖𝑓(𝜃) − 𝒚‖11 + λ|𝜃|) 

 
Special case: Linear model 
In the case where 𝑓 is a linear function and it represents a matrix 𝐌>, we can identify 𝜃 using 
regularized least square regression (lasso) by solving the following optimization problem. 
 

𝜃3 = argmin
$
<||𝐌> ⋅ 𝜃 − 𝒚||11 + 𝜆|𝐼TF𝜃|> 

 
Here 𝐼TF refers to the identity matrix with ones only at the indices corresponding to transcription 
factors, since those are the only values set by the model. We solve this least-squares regression 
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problem using coordinate descent. The value of 𝜆 is varied over a large range and solutions with 
desired sparsity are returned. 
 
Preprocessing single-cell gene expression data: We normalized gene expression in each cell 
by total counts over all genes. This was followed by a log transformation. We used highly variable 
genes for the analysis with mean log transformed expression values of greater than 0.0125 and 
dispersion of 0.5. Additionally, we removed mitochondrial and ribosomal genes from the analysis.  
 
Computing differential expression (y): The PrecICE algorithm is very sensitive to the measured 
differential expression between source and target cell state. Thus, identification of the source and 
target cell state clusters can have a large impact on the predicted transcription factors to perturb.  

• In cases where batch-level variation was present, we used scVI65 to remove these effects 
as well as to measure differential expression between source and target cell state. We 
used a cutoff of statistical significance (p=0.02) and not the magnitude of differential 
expression.66,67 

• In cases where source and target cell state were measured as part of the same experiment 
without large sources of variation, we did not perform batch correction. For computing 
differential expression between source and target cell states, we used Seurat with default 
parameters. We used a cutoff of statistical significance (p=10-6) and not the magnitude of 
differential expression.67 

 
The Precision Score. As part of its output, the PreciCE algorithm produces a Precision Score 
(e.g., Fig. 3D). The Precision Score is equal to the predicted ‘error’ reduction between the desired 
target cell state and the state achieved by the suggested perturbation (as predicted by the model). 
This value is normalized by the total error between the original source state and the target state 
(|𝑓(𝜃) − 𝑦|)/𝑦. The Precision Score can thus be conceived as the percentage reduction in the 
difference between the source and target cell states. While this may not correspond literally to the 
efficiency of a real-world experimental network perturbation, it is a very useful heuristic to estimate 
the relative effectiveness of different transcription factor perturbations. It is also instrumental in 
identifying an optimal number of transcription factors to perturb. As more transcription factors are 
predicted for perturbation, the precision score gradually increases up to a point at which it starts 
to level off with the inclusion of further perturbed transcription factors. This indicates the point at 
which further transcription factor perturbations may have less of an effect. It can also be a sign of 
low model confidence in the predicted perturbation as the model is unable to find another 
transcription factor to perturb that would have a strong effect. In cases where PrecICE does not 
predict any transcription factor with a precision score greater than 10-15%, it is likely because the 
model was unable to find a solution. 
 
Simplifying assumptions. The PreciCE algorithm uses many simplifying assumptions: 
(1) Transcription factors can regulate different genes in different cell types. While the PreciCE 
algorithm can technically be run on any underlying transcriptional network, we do not recommend 
using a “universal transcriptional network”. Instead, under the optimal settings, the PreciCE 
algorithm reconstructs its transcriptional networks solely from the input data of starting and target 
cells. This is both a strength (potentially greater network accuracy, no input network required) and 
a weakness (too few cells in input data translated into noisy networks). In cases where generation 
of such networks is difficult due to insufficient data or computational resources, we also provide 
pre-computed networks for commonly studied cell types.  
(2) The network edges represent transcription factor binding to proximal promoters. Enhancers 
are not included. 
(3) Edge weights between transcription factors and their target genes represent a linear 
relationship. In other words, the algorithm assumes that increasing the expression level of a 
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transcription factor will linearly increase the expression level of its target genes, both in cases of 
individual gene perturbation effects as well as in combination This is not always the case in reality. 
(4) The algorithm is designed such that the effect of a transcription factor’s perturbation will 
propagate a defined number of steps (nodes) in the network, like ripples on a surface. This is not 
always true in reality. 
(5) The gene regulatory network inference is not perfect. For example, in our pluripotent-to-
mesoderm prediction, MESP1 has an out-degree of 0 (meaning MESP1 is falsely predicted to 
regulate 0 genes). Still, our experimental data and that of others show that MESP1 can promote 
mesoderm formation. In our pluripotent-to-mesoderm prediction, MESP1 is still highly ranked 
because it is highly differentially expressed, and the model predicts that, after having modulated 
the higher-ranked genes, any further large network perturbations could be detrimental, so it 
prioritizes highly differentially expressed genes with low out-degree. 
 
Considerations for running the PreciCE algorithm.  

• Transformations of the input gene expression space beyond standard preprocessing, 
such as in the case of batch correction, should be avoided whenever possible because 
they risk impacting the true gene expression variation between the source and target cell 
states. However, in cases where experimental covariates vary between the source and 
target cell states, batch correction would be required regardless. 

• Identification of cell state clusters is critical and care should be taken to avoid excessive 
heterogeneity in these clusters.  

• When running the model, both differentially expressed and non-differentially expressed 
genes are included and add constraints to the model output.  

• While some of the simplifying assumptions in PreciCE limit its flexibility to detect complex 
effects, they also enable it to be very confident in its prediction in case a clear solution 
exists. This would be reflected in high values of the precision score (>20%) while 
perturbing only a few transcription factors.  

 
Visualization of the PreciCE algorithm’s reconstructed network. The PreciCE algorithm’s 
reconstructed transcriptional networks were visualized as force-directed graphs using Observable 
(https://observablehq.com). 
 
Comparison of predictions for three different datasets. For comparisons of the PreciCE 
output from datasets Friedman et al., Pijuan-Sala et al., and Magnusson et al. (this study), we 
used a gene regulatory network inferred from the Friedman et al. dataset. 

https://observablehq.com/d/bd8991922a385264
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Figure 1. PreciCE (Precision Cell-Fate Engineering), a method for data-driven precision cell-
fate programming. ScRNA-seq datasets (e.g., publicly available) feed into our PreciCE algorithm 
that converts these data into genetic instructions for cell fate programming via simultaneous up- 
and downregulation of multiple genes. To execute these complex genetic instructions, our 
PreciCE toolbox consists of three new dual-CRISPR systems for simultaneous multi-gene 
activation and repression. When combined, this workflow enables rational, data-driven 
specification of precise cell types while simultaneously repressing undesired, contaminating cell 
types for improved stem cell-based applications.  
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Figure 2. The PreciCE toolbox: Three CRISPR–based architectures for simultaneous 
activation and repression of multiple genes 
(A) A hybrid CRISPR-Cas13d/dCas12a array encodes Cas13d and dCas12a gRNAs on a single 
transcript. (B) When transfected with a dCas12a-miniVPR activator and Cas13d, this enables 
simultaneous upregulation of one gene (CD9) and RNA-targeted downregulation of another gene 
(constitutively expressed GFP) as measured using flow cytometry. (Numbers in axis legends 
represent expression ratio between targeting and non-targeting arrays, i.e., fold-change). (C) A 
scRNA-seq heatmap (Rows: cells, columns: genes) shows simultaneous downregulation of three 
genes [GFP↓ HRAS↓ SMARCA4↓] and upregulation of three genes [CD9↑ IFNG↑ IL1RN↑] in 
HEK293T cells (lower half of heatmap) compared to baseline (non-targeting gRNAs; upper half). 
Heatmap color scale spans the maximum and minimum expression value for each gene. Note 
that the fold-change metric is heavily affected by baseline expression level. (D) A hybrid CRISPR 
Lb-dCas12a/As-dCas12a array is encoded along with Lb-dCas12a-KRAB on a single construct. 
(E) It enables simultaneous gene repression (GFP) and activation (CD9) when co-transfected 
with As-dCas12a-miniVPR. (F) ScRNA-seq data showing simultaneous modulation of six genes, 
in this case by encoding two unique gRNAs for each Lb-dCas12a target gene. (G) A 
dCas9/dCas12a all-or-none design encodes the gRNAs for each Cas protein on the construct of 
the other Cas protein. Only cells that take up both constructs perform any gene modulation, 
preventing partial modulation and heterogeneity with plasmid delivery (e.g., transfection). (H) 
Upregulation of CD9 and downregulation of endogenous GFP, shown by flow cytometry. (I) 
ScRNA-seq data of iPSCs repressing two transcription factors [SOX2↓ NANOG↓] and activating 
two others [TBX6↑ SP5↑]. (J) Distinguishing features of the three multi-gene control systems. 
Modulation modes: whether gene modulation occurs on the RNA or DNA level. Multiplexing 
potential: The rough number of genes that can be targeted with the presented designs. Cas-Cas 
Promiscuity: Whether the two Cas proteins interfere with each other. Single Array Encoding: 
Whether gRNAs from both Cas proteins can be encoded on a single hybrid CRISPR array. gRNA 
Promoter: Recommended promoters for gRNAs based on our experimental data.  
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Figure 3. The PreciCE algorithm: A computational tool for data-driven cell fate conversion. 
(A) The PreciCE algorithm uses scRNA-seq data of a desired starting cell type and target cell 
type as input. (B) It reconstructs an underlying transcriptional network of differentially expressed 
transcription factors. Using this network, it identifies a set of transcription factors to modulate (up- 
and downregulation allowed), for most effectively destabilizing the starting cell state and activating 
the target cell state. (C) The output consists of a ranked list of transcription factors to activate (“↑”) 
or repress (“↓”). This list is accompanied by a Precision Score – an estimate of how similar the 
perturbed starting state will be to the target state. The list of transcription factors is cumulative: 
for each transcription factor down the list, the Precision Score reflects how efficient the cell state 
conversion will be when that transcription factor is perturbed together with all higher-ranked 
transcription factors. Based on where the Precision Score curve levels out, users can decide how 
many of the top-ranked transcription factors to modulate experimentally. In this example, a 
reasonable modulation gene set is [Gene A↓ Gene B↑ Gene C↓ Gene D↑]. (D) Predicted gene 
perturbation set for converting pluripotent stem cells into cardiogenic mesoderm. (E) The model 
ranks genes based on their overall network effects and not merely for being highly differentially 
expressed or regulating many genes (out-degree). (F) The PreciCE algorithm varies the constant 
λ iteratively and registers how the predicted perturbation effect changes (i.e., which transcription 
factors are chosen to be perturbed). This enables gene ranking when reading this graph from left 
to right. (G) The computationally reconstructed network of differentially expressed genes for this 
experiment, visualized using Observable, an online tool. Thick borders highlight genes suggested 
for perturbation. Node size represents differential expression magnitude between starting and 
target cells. Disconnected nodes (n=99) are excluded for clarity. Note that TBX6 is predicted to 
directly or indirectly regulate many mesoderm-associated transcription factors (arrowheads; e.g., 
MESP1, MESP2, MIXL1, EOMES, MSX1, TBXT). (H) Across three different scRNA-seq datasets 
(Mouse/Human, In vitro/In vivo), TBX6 and SOX2 are the PreciCE algorithm’s top-ranked 
transcription factors to perturb for pluripotent-to-mesoderm conversion 
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Figure 4. The PreciCE algorithm can predict regulators of developmental stage-specific 
cell states. (A) To validate the PreciCE algorithm’s top-ranked prediction of TBX6 activation for 
pluripotent-to-mesoderm conversion, we experimentally compared TBX6 activation in iPSCs (3 
days post-transfection) with other known mesoderm-specific transcription factors using CRISPRa. 
We used our dCas12a/dCas9 design to make results comparable with later experiments (Fig. 5) 
and targeted each gene’s promoter with an array of 5 dCas12a gRNAs. (B) In the resulting 
scRNA-seq data, all resulting cells cluster as either NANOG(high) iPSCs, NANOG(low) iPSCs, or 
mesoderm/mesendoderm. [TBX6↑] and [MESP1↑] most efficiently convert iPSCs into 
mesoderm/mesendoderm. (C) Visually, though, [TBX6↑] and [MESP1↑]-induced cells look 
different, [MESP1↑]-induced cells being larger. (D) [TBX6↑]-induced cells express markers of 
earlier mesoderm (EOMES, TBXT/T/BRACHYURY, MESP1) compared to [MESP1↑]-induced 
cells (NKX2.5, MYL7, TNNI1) (Data points represent 100 bootstrapping iterations). (E) This 
makes [TBX6↑]-induced cells more similar to the early mesoderm cells that were used as input to 
the PreciCE algorithm (Friedman et al., small-molecule CHIR99021 protocol, 2-day time point), 
whereas [MESP1↑]-induced cells are more similar to later mesoderm cells, which were not used 
as input (Friedman et al., 5-day time point). Thus, the PreciCE algorithm accurately predicted a 
transcription factor (TBX6) whose upregulation generated mesoderm of a developmental stage 
that matched that of the input data.  
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Figure 5. Data-driven precision cell fate conversion using PreciCE. (A) For converting iPSCs 
to cardiac mesoderm, we performed the PreciCE algorithm’s suggested perturbation [SOX2↓ 
TBX6↑ NANOG↓ SP5↑] together with several control perturbations ([TBX6↑], [TBX6↑ SP5↑], 
[SOX2↓ NANOG↓], [Non-targeting]) and FACS-sorted cells for scRNA-seq without gating for 
transfected cells. We computationally clustered cells from all experimental conditions together. 
All cells cluster as either undifferentiated iPSCs, cardiogenic mesoderm (desired), endothelial 
mesoderm (undesired), or endoderm (undesired). The differentiated cells (dashed line) were 
selected for further analysis: (B) Adding SP5 activation [TBX6↑ SP5↑] improves specificity by 
blocking formation of (SP5-negative) endothelial cells (Cell-fate logic: Cardiac mesoderm AND 
NOT Endothelial), though not blocking formation of (SP5-positive) endoderm. Thus, increasing 
the number of perturbed genes is one way to rationally include or exclude specific cell fates. (C) 
Adding repression of the pluripotent state [TBX6↑ SP5↑ SOX2↓ NANOG↓] improves efficiency of 
cell conversion. As expected, it does not markedly affect the mesoderm/endoderm ratio. (Bar 
chart shows relative number of cells in the scRNA-seq dataset, defined as 1.0x for the [TBX6↑ 
SP5↑] condition to facilitate comparison). Thus, destabilizing the starting state is an important 
feature of PreciCE. (D) To actively block endoderm, we input endoderm as “starting state” and 
mesoderm as “target state” into the PreciCE algorithm, and combined the top-ranked output 
genes [TBX6↑ FOXA2↓ SOX17↓] with our pro-mesoderm gene set [TBX6↑ SP5↑ SOX2↓] 
(excluding NANOG; see main text) to generate the perturbation set [TBX6↑ SP5↑ SOX2↓ FOXA2↓ 
SOX17↓] for Cardiac mesoderm AND NOT Endothelial AND NOT Pluripotent AND NOT 
Endoderm cell-fate logic. This dramatically reduces formation of HNF1B+ endoderm (E; RT-qPCR 
data; see Fig. S9I; error bars represent standard deviation) while not affecting MESP1+ 
mesoderm (F; one outlier sample was excluded). (G) Thus, data-driven multi-gene modulation 
can add precision to heterogeneous cell differentiation systems by actively guiding cells through 
a branched lineage tree. (H) The PreciCE algorithm’s predicted gene modulation set for 
Endoderm [SOX2↓ FOXA2↑] indeed generates endoderm (I) but also some undesired mesoderm 
(J). Combined with an inversion of the Endoderm-to-Mesoderm prediction (D) to generate the 
Endoderm AND NOT Mesoderm gene set [SOX2↓ FOXA2↑ TBX6↓] actively blocks mesoderm 
formation (J) without affecting endoderm formation (I-K), showcasing the modularity and 
programmability of PreciCE.  
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Figure S1. Engineered CRISPR-dCas12a arrays can be used for highly multiplexed gene 
control. (A) We expressed a 30-gRNA dCas12a array, preceded by a BFP reporter gene, under 
the control of a Pol. II promoter. Each gRNA targets the promoter of one gene for upregulation. 
(B) When this construct and a dCas12a-miniVPR activator are co-transfected in HEK293T cells 
carrying genomically integrated GFP, all 30 target genes are upregulated, as measured by RT-
qPCR. Expression fold-change varies widely and depends in part on the efficiency of the gRNA 
and the baseline expression of the target gene. (C) To estimate the efficiency of multi-gene 
modulation on the single-cell level, we expressed a 7-gRNA CRISPR array and analyzed two 
target gene products (CD9 and GFP) by flow cytometry 48 hr later. (D) Co-activation of these two 
genes is highly efficient, indicating that multi-gene activation occurs on the single-cell level. (E) 
To evaluate whether there is an efficiency drop as CRISPR arrays grow longer, we generated 
seven CRISPR arrays of varying length (4-30 gRNAs) where one gRNA (green) targets the GFP 
promoter for activation and all other gRNAs (white) contain non-targeting spacers, transfecting 
this construct together with a dCas12a-miniVPR activator. (F) Increasing the number of gRNAs 
in the array reduces GFP activation, possibly due to dilution of available dCas12a protein (error 
bars show standard deviation). Note that not only does the median GFP fluorescence level 
decrease but also the percentage of GFP-expressing cells (despite gating for cells that had taken 
up both constructs). However, even with a 30-gRNA array, there is only a ~50% drop in median 
GFP activation efficiency and a ~70% drop in the percentage of GFP+ cells, supporting the use of 
Pol. II-transcribed CRISPR arrays for highly multiplexed gene regulation in human cells. We 
deliberately used a weaker dCas12a construct (wild-type protein sequence rather than the 
improved hyper-dCas12a) to increase sensitivity and dynamic range.  
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Figure S2. Optimization of the CRISPR-Cas13d/dCas12a hybrid array system. (A) The gRNA 
repeats of Cas13d and Lb-dCas12a, including separator sequences20, are very different from one 
another. (B) To test Cas13d/dCas12a cross-reactivity, we expressed a CRISPR “array” consisting 
of a single gRNA with either a Cas13d repeat or a dCas12a repeat, a spacer (targeting CD9 for 
upregulation or GFP for downregulation), and another repeat, all preceded by a BFP gene and 
expressed under a Pol. II promoter (CAG). This array construct was co-transfected with either 
Cas13d or dCas12a-miniVPR. (C) We designed eight such CRISPR arrays combining either the 
Cas13d or dCas12a repeat with spacers targeting the CD9 promoter ((2), (4)) or GFP gene body 
((6), (8)) or corresponding non-targeting spacers ((1), (3), (5), (7)) (Diagrams show only the array 
portion of the constructs). (D) We transfected arrays (1)-(4) together with a dCas12a-miniVPR 
activator in HEK293T cells, stained cells with a CD9-A467 antibody 48 hr later and analyzed by 
flow cytometry. Only cells co-expressing the CD9-targeting gRNA containing a dCas12a repeat 
activated CD9, showing that dCas12a cannot use gRNAs containing Cas13d’s repeat. (E) 
Conversely, we used HEK293T cells that constitutively express genomically encoded GFP and 
transfected these with arrays (5)-(8) together with Cas13d. Only cells expressing the GFP-
targeting gRNA containing a Cas13d repeat repressed GFP, showing that Cas13d does not 
recognize the repeat region of dCas12a’s gRNA. (F) We tested the effects of fusing Cas13d to a 
nuclear localization signal or nuclear export signal, and of expressing a hybrid Cas13d/dCas12a 
array under a Pol. II or Pol. III promoter to analyze GFP repression efficiency in HEK293T cells 
constitutively expressing GFP. (G) Cas13d-NLS together with a Pol. III-transcribed array works 
best, as measured by flow cytometry. (Note that the y axis starts at 0.70. Samples were 
normalized to their own non-targeting values. Each data point represents the median fluorescence 
of one experimental replicate, as measured by flow cytometry) (H) Accordingly, using a Pol. II 
expression construct to drive Cas13d/dCas12a hybrid arrays does not work well. (I) When co-
transfected in HEK293T cells with Cas13d and dCas12a-miniVPR, gene repression is barely 
detectable, though dCas12a-miniVPR-mediated activation works well. (J) This is not due to low 
expression of the CRISPR array. In fact, Pol. II-mediated expression leads to much higher levels 
of the array transcript (using primers specific to the array) than expressing the array from a Pol. 
III promoter (see panel F). (K) To test the effects of gRNA position, CRISPR array length, and the 
number of unique gRNAs targeting a gene when the array is expressed under a Pol. III promoter, 
we designed multiple CRISPR array constructs and co-transfected each of these with Cas13d in 
HEK293T cells constitutively expressing GFP, measuring GFP fluorescence by flow cytometry 48 
hr later but not analyzing other target genes. (L) CRISPR array length does not cause a 
measurable reduction in GFP repression efficiency, though we cannot exclude that this is because 
the GFP-targeting gRNAs are the first gRNAs in the array. (M) GFP repression works better when 
Cas13d gRNAs are encoded after dCas12a gRNAs on the hybrid array. Surprisingly, GFP 
repression still works when the array has an alternating Cas13d/dCas12a gRNA arrangement 
((6)), despite Cas13d being unable to process dCas12a’s gRNAs (E). This suggests that Cas13d 
is functional even with a full 44-nt dCas12a gRNA protruding from its own gRNA’s 3’ end. GFP 
repression is more effective when using two unique gRNAs instead of just one (compare (2)-(4) 
with (5)). (Note that the same non-targeting array data are plotted in panels L and M). (N) We 
also tested positional effects in a Pol. II-transcribed array. (O) Any such effects were very subtle, 
consistent with previous results for Pol. II-transcribed Cas12a arrays20. Therefore, positional 
effects may be different depending on whether arrays are transcribed under a Pol. II or Pol. III 
promoter. (P) To test Cas13d collateral activity, we used a hybrid CRISPR-Cas13d/dCas12a array 
targeting (among other genes) GFP for repression. (Q) We co-transfected this with a Cas13d 
construct into HEK293T cells expressing doxycycline-inducible GFP and measured the 
expression level of the non-targeted gene product EGFR using flow cytometry (see Methods). (R) 
Doxycycline administration activates strong GFP expression and efficient Cas13-mediated GFP 
repression. (S) But it also leads to marked downregulation of the collateral marker gene EGFR, 
specifically in cells expressing the GFP-targeting gRNA. This effect, which we interpret as 
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collateral activity, is much reduced when doxycycline was not administered and GFP expression 
is therefore much lower (S; “No doxycycline”), showing that collateral activity depends on 
expression level of the target gene. (T) These tests informed the design of our final CRISPR-
Cas13d/dCas12a hybrid array, which we tested in HEK293T cells carrying genomically integrated, 
doxycycline-inducible GFP (but relying on leaky GFP expression in the absence of doxycycline 
administration to avoid collateral activity). (U) Three genes can be repressed, and three genes 
simultaneously activated, as measured by RT-qPCR 48 hr after transfection. All error bars 
represent standard deviation.  
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Figure S3. ScRNA-seq analysis of multi-gene perturbation using the CRISPR-
Cas13d/dCas12a hybrid array system. (A) We transfected HEK293T cells with a dCas12a-
miniVPR, Cas13d, and a Pol. III-encoded Cas13d/dCas12a hybrid array (see Fig. 2A). We relied 
on leaky GFP expression without doxycycline administration to prevent Cas13d collateral activity 
caused by high target gene expression. Cells were FACS-sorted into 384-well plates and 
processed for sequencing using the Smart-seq3xpress workflow26. (B) Post-sequencing quality 
control plot of scRNA-seq libraries, showing that the final dataset consisted of 688 cells. (C) Violin 
plots demonstrating simultaneous repression of GFP, SMARCA4, and HRAS, and activation of 
CD9, IFNG, and IL1RN (Each data point is one cell. Expression fold-change values correspond 
to the mean read count across cells expressing the targeting array divided by that of cells 
expressing the non-targeting array.) (D) Expression fold-change values correspond well between 
RT-qPCR and scRNA-seq (dashed line delineates Cas13d target genes). (E) The six target genes 
are among the most highly differentially expressed genes in these cells, though many other genes 
are differentially expressed at this 48 hr time point, possibly because of broad secondary effects 
for some of the target genes. (F) Differential expression of mitochondrial transcripts can be used 
to estimate Cas13d collateral effects, as these transcripts are protected from Cas13d by the 
mitochondrial membrane and will artifactually appear upregulated when collateral effects are 
present25. However, cells expressing the CRISPR array with targeting gRNAs show no apparent 
upregulation of mtRNAs (red data points), showing that collateral cleavage is not detected.  
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Figure S4. Development of a CRISPR Lb-dCas12a/As-dCas12a hybrid system. (A) To test 
cross-reactivity between Lb-dCas12a and As-dCas12a, we transfected HEK293T cells with one 
plasmid expressing either As-dCas12a-VPR or Lb-dCas12a-VPR followed by a CRISPR array. 
The array contained two gRNAs, one with a non-targeting spacer and the other targeting the 
promoter (TRE3G) of GFP (genomically integrated in the HEK293T cells) for GFP activation. The 
array’s gRNAs contained either Lb-dCas12a repeats or wild-type As-dCas12a repeats, allowing 
us to test combinations of dCas12a and gRNA repeat variants. We also tested two engineered 
variants (DR10, DR29) of the As-dCas12a gRNA repeats32. Sequence alignment shows how the 
DR10 variant is less similar than the wild-type As-dCas12a repeat to the Lb-dCas12a repeat (also 
shown are AAAT/TTTT/TTTG synSeparators20. These constructs were transfected in HEK293T 
cells containing genomically integrated TRE3G-GFP; GFP fluorescence was measured by flow 
cytometry 48 hr later. Median GFP fluorescence was plotted against the percentage of GFP+ cells 
for a more nuanced view of GFP activation strength than either metric alone. (B) Lb-dCas12a-
VPR works best with its own gRNA repeat. Lb-dCas12a shows some undesired promiscuous 
activity also with gRNAs containing the As-dCas12a WT and DR29 repeats. But, promisingly, Lb-
dCas12a shows very little cross-reactivity with the As-dCas12a DR10 repeat. (C) As-dCas12a-
VPR is slightly more promiscuous than Lb-dCas12a-VPR and can activate GFP using a gRNA 
containing Lb-dCas12a’s repeat. Fortuitously, the DR10 repeat performs at least as well as the 
wild-type As-dCas12a repeat. Thus, the DR10 variant is a crucial component for enabling non-
interference between Lb- and As-dCas12a. (D) To enable further optimization, we tested what 
happens when a dCas12a-Activator and dCas12a-Repressor are recruited to the same site on a 
target gene promoter. First, an Lb-dCas12a-VPR-Activator, when expressed alone together with 
a GFP-targeting Lb-dCas12a gRNA, activates genomically integrated GFP (top histogram), as 
expected. But if co-expressed with the same dCas12 variant (Lb-dCas12a) fused to a repressor 
(KRAB), GFP activation no longer occurs (bottom histogram). This shows that when an activator 
and a repressor are recruited to the same site, repression wins. (E) This holds true also in 
competition between As-dCas12a and Lb-dCas12a: An As-dCas12a-VPR activator 
promiscuously uses a gRNA containing an Lb-dCas12a repeat to activate GFP (top histogram). 
But when As-dCas12a-VPR is co-expressed with an Lb-dCas12a-KRAB repressor, As-dCas12a-
VPR is no longer able to promiscuously activate GFP. Panels D-E thus show that the repressor 
domain should be on the less promiscuous of the two dCas12a variants (i.e., Lb-dCas12a) to 
prevent undesired promiscuous repression of target genes intended for activation. (F) When As-
dCas12a uses the DR10 repeat for its gRNAs, Lb-dCas12a is by far the less promiscuous of the 
two dCas12a variants. Indeed, even if Lb-dCas12a-KRAB promiscuously interferes with As-
dCas12a-VPR when the wild-type As-dCas12a repeat is used, and Lb-dCas12a-KRAB thus 
prevents As-dCas12a-VPR from fully activating GFP (top two histograms), such undesired 
interference is no longer seen when the As-dCas12a gRNAs use the DR10 repeat variant (bottom 
histogram). Thus, to prevent undesired interference between Lb- and As-dCas12a, the following 
design should be used: As-dCas12a gRNAs should use the DR10 repeat variant; Lb-dCas12a 
should carry the repressor domain while As-dCas12a carries the activator domain; all gRNAs 
should be expressed together with the Lb-dCas12a-Repressor gene and not with the promiscuous 
As-dCas12a gene. (G) When this is true, co-expression of the two dCas12a constructs (“(1)” and 
“(2)”) enables simultaneous activation of an As-dCas12a-Activator target gene (CD9) and 
repression of an Lb-dCas12a-Repressor target gene (GFP) in a HEK293T cell line that 
constitutively expresses GFP (different cell line from the one in panels A-F). In cells that only take 
up the Lb-dCas12a-Repressor + CRISPR array construct (“(1)”), repression of the Lb-dCas12a 
target gene GFP occurs but no promiscuous repression of the As-dCas12a target gene CD9, 
demonstrating orthogonality (The plot shows median fluorescence levels in experimental 
triplicates, each sample normalized to the average of its non-targeting control). (H) shows 
experimental replicates of the FACS plot shown in Fig. 2E. (I) Quality control plot of scRNA-seq 
(Smart-seq3xpress) data for HEK293T cells expressing the CRISPR array in Fig. 2F. (J) 
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Subsetting for cells that express both dCas12a variants, violin plots show the simultaneous 
downregulation of GFP, SMARCA4, and HRAS, and upregulation of CD9, IFNG, and IL1RN 
(Each data point is one cell. Fold-change corresponds to the mean read count across cells 
expressing the targeting array divided by that of cells expressing the non-targeting array. Fold-
change could not be calculated for IFNG and IL1RN as they are not normally expressed in these 
cells.) (K) A volcano plot of scRNA-seq data shows that the Lb-dCas12a-Repressor target genes 
are among the most highly differentially expressed genes, but the As-dCas12a-Activator target 
genes are more subtly modulated. At this 48-hr time point, a number of secondary transcriptional 
effects have taken place. (Note that the limma/voom algorithm computes expression fold-change 
differently from panel J). All error bars represent standard deviation.  
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Figure S5. A dCas9/dCas12a two-construct architecture for all-or-none gene modulation. 
(A) In transfection experiments, some cells may fail to take up both of two co-transfected 
plasmids. We co-transfected iPSCs with two plasmids expressing dCas12a-miniVPR-GFP and 
dCas9-mCherry-KRAB, respectively. (B-C) Twenty-four hours later, a third of the cells express 
both constructs. (D) If a dCas12a-Activator and dCas9-Repressor gene are encoded on the same 
plasmid as their own gRNAs (“(1)” and “(2)”), cells transfected with only one construct will perform 
only gene activation [CD9↑] or only gene repression [GFP↓] (in HEK293T cells constitutively 
expressing genomically integrated GFP), which risks introducing undesired heterogeneity in cell 
fate programming applications. Cells that take up both constructs simultaneously activate CD9 
and repress GFP. (Each data point represents median fluorescence in one flow cytometry 
replicate, each sample normalized to the average of its non-targeting control). (E) But by encoding 
gRNAs from each dCas protein onto the expression vector of the other dCas protein, only cells 
that take up both constructs (“(3)+(4)”) simultaneously upregulate CD9 and downregulate GFP. 
Cells that take up only one of the two constructs (“(3)” or “(4)”) do nothing. This architecture 
constitutes a logical AND gate, ensuring that only cells that take up construct (3) AND construct 
(4) perform any gene modulation. (F) Post-sequencing quality control plot of scRNA-seq libraries 
of FACS-sorted iPSCs expressing a dCas12a-miniVPR activator and dCas9-KRAB repressor 
construct encoded with the gRNAs shown in Fig. 2I, showing that the final dataset consisted of 
1003 cells. (G) Violin plots of the data shown in Fig. 2I (Each data point represents one cell. Fold-
change corresponds to the mean read count across cells expressing the targeting gRNAs divided 
by that of cells expressing the non-targeting gRNAs). (H) Volcano plot showing that the four target 
genes are among the most highly differentially expressed genes, though massive global 
transcriptional changes have also occurred 48 hr after perturbing these four transcription factors.   
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Figure S6. Estimating multi-gene regulation in individual cells. With CRISPR-mediated gene 
perturbation, target genes do not show binary on/off modulation but gradual differences in 
expression levels (compare violin plots in Figs. S3C, S4J, S5G). Moreover, scRNA-seq data is 
noisy due to transcriptional bursting and dropout effects. (A-C) We sought to assess whether 
multi-gene regulation occurs in individual cells. We used the following method (see Methods). 
For each target gene, we used the control cells (expressing the non-targeting gRNAs) as 
reference for the baseline expression pattern of that gene. Based on that, we set an expression 
threshold, beyond which that gene was considered “perturbed”. That threshold was arbitrarily set 
to include as many as possible of the cells expressing the targeting gRNAs and as few as possible 
of the control cells expressing the non-targeting gRNAs. Then, for every individual cell, we asked 
how many of the target genes were thus “perturbed” and plotted the results in panels A-C (data 
points represent bootstrapping iterations and standard deviation). The results are likely an 
underestimate because transcriptional bursting and dropout effects introduce much noise and 
make the data zero-inflated. None of the target genes entirely show an “off/on” pattern (e.g., zero 
in all control cells; high in all perturbed cells). An indication that it is difficult to set strict perturbation 
thresholds can be seen when looking at the data for the control cells (expressing the non-targeting 
array): for many of these cells, some target genes were statistically classified as “perturbed”. Such 
erroneous classification was likely caused, at least in part, by such noise. (D-F) Despite such 
noise, our data allowed us to analyze whether there were intrinsic biases for or against multi-gene 
regulation inside each cell. For each of the target genes, some fraction of cells will be classified 
as “perturbed” given the perturbation thresholds described above. If the target genes are 
independently regulated, the number of cells showing all genes perturbed is equal to the 
multiplication product of all genes’ individual perturbation fractions. For example, in a hypothetical 
scenario where there are six target genes and, for each gene, 50% of cells are classified as 
“perturbed”, then the fraction of cells showing all six genes perturbed will be 0.56=0.016 if the six 
genes are independently modulated. Corresponding fractions can be calculated to estimate how 
many cells should show 5, 4, 3, 2, 1, and 0 genes perturbed. If, on the other hand, cells expressing 
a CRISPR array show any biases toward regulating all target genes or only subsets of target 
genes, the experimentally observed data should deviate from that independent-regulation 
scenario. We used the perturbation thresholds defined for each target gene and performed this 
calculation. Indeed, the experimentally observed data matched the independent-regulation 
scenario remarkably well (data points show 100 bootstrapping iterations and error bars represent 
standard deviation). The data suggest there is a slight desirable bias toward perturbing all target 
genes. Importantly, there is no bias against perturbing multiple genes per cell. These data suggest 
that the efficiency of multi-gene perturbation on the single-cell level is a direct product of the 
perturbation efficiencies of each individual target gene. (G) With [TBX6↑ SP5↑ SOX2↓ NANOG↓] 
perturbation using the dCas9/dCas12a design (Fig. 2G-I), cells have separated into different 
clusters in a UMAP 48 hr after transfection. (H) NANOG downregulation is more effective than 
SOX2 downregulation (I; compare Fig. S5G). Because perturbation affects not only perturbation 
magnitude per cell but also the fraction of cells that execute the perturbation (see Fig. S1F), a 
subset of cells shows NANOG downregulation but not SOX2 downregulation (H-I, arrows). (J) 
Perturbation efficiency is affected in part by the number of CRISPR target genes: TBX6 
upregulation is more efficient when only TBX6 is targeted than when both TBX6 and SP5 are 
targeted. The difference in perturbation magnitude is consistent with dilution of available dCas12a 
protein but can be rescued by boosting dCas12a expression level (see Fig. S12A-B).  
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Fig. S7. Mechanisms of CRISPR-based gene activation and repression. (A-B) CRISPRi with 
dCas12a-KRAB (A) and dCas9-KRAB (B) achieves its repressive effect through reduction of burst 
frequency. The data suggest a simultaneous increase in burst size, perhaps as a compensatory 
mechanism. Insets show violin plots of UMI-containing read count for cells expressing non-
targeting (gray) and targeting (purple) gRNAs for comparison. Error bars represent 95% 
confidence interval. (C-D) Gene upregulation with dCas12a-miniVPR happens mainly through 
increased burst size (Target genes IFNG and IL1RN could not be analyzed because baseline 
expression was 0). (E) For the CRISPRa target gene CD9, the dCas12a gRNA is located within 
the natural transcriptional start site (plots represent alignment of UMI-containing sequencing 
reads, zoomed in to the start of the first exon). Likely because of steric hindrance, CRISPRa-
induced transcription starts ~80 bp downstream of the normal start site (“Promoter”: UCSC 
Genome Browser EPDnew track). (F) Cas13d-targeted transcripts show reduced burst size but 
not frequency, consistent with Cas13d’s role as an mRNA-targeting enzyme. Note that HRAS 
repression was so inefficient that the bursting inference yielded non-significant differences. (G) 
We investigated whether Cas13d-targeted partial transcripts linger long enough to be detectable. 
Because Smart-seq3xpress uses an oligo-dT primer to capture poly-adenylated RNAs during 
reverse transcription, Cas13d-targeted transcripts might show fewer sequencing reads aligning 
upstream (5’) of the Cas13d binding site if Cas13d degradation products linger in the cell after 
Cas13d-mediated transcript cutting. We first analyzed all control cells expressing the non-
targeting CRISPR array to see what fraction of UMI-containing sequencing reads normally align 
upstream of the site where targeting Cas13d gRNAs would bind (gray bars). Next, analyzing cells 
expressing the targeting gRNAs (purple bars), we found that a lower fraction of UMI-containing 
sequencing reads align upstream of the Cas13d binding site than in the control cells (gray bars). 
This suggests that at least the 3’ end of the Cas13d-targeted transcript lingers long enough to be 
detectable (This method cannot be used to detect any putative lingering 5’ end). (H) In support of 
this, the long Cas13d target transcript SMARCA4 (105 kb) has a single region where cells 
expressing the SMARCA4-targeting gRNA show more UMI-containing sequencing reads than 
control cells expressing the non-targeting gRNA, namely the 2-kb region immediately downstream 
of the Cas13d binding site (inset). This suggests that the 3’ part of the Cas13d-degraded transcript 
did indeed linger in the cell such that the UMI was added there during reverse transcription. 
Furthermore, it suggests that Cas13d can cut a transcript indiscriminately somewhere within 2 kb 
of its target site. This pattern was not visible in the target transcripts GFP (~1 kb) or HRAS (~3 
kb), possibly because it takes a longer transcript to make this pattern visually apparent. (I) Sashimi 
plot of the downregulated Cas13d target gene HRAS (expression fold-change 0.48x), where lines 
show exon-spanning sequencing reads. Note that, in addition to an overall reduction in HRAS 
transcript abundance (note difference in scale for y-axes), many transcripts appear to lack the 
first two exons (arrowheads), suggesting that Cas13d could be used to generate synthetic 
isoforms (though these likely lack a 5’ UTR). (J) Experimental setup to address whether Pol. III-
transcribed transcripts get poly-adenylated. For reverse transcription, we used primers that were 
either specific to one gRNA sequence or oligo-dT primers that would only amplify the array if it 
was poly-adenylated. We used RT-qPCR primers specific to a region of the CRISPR array 
upstream of the RT primers. A Pol. II-transcribed array construct was used as a positive control, 
as we know this gets poly-adenylated. The array constructs (without Cas genes) were transfected 
into HEK293T cells as two separate experimental conditions. (K) Both array-specific and oligo-
dT RT primers amplify the Pol. II-transcribed array, as expected, but surprisingly also the Pol. III-
transcribed array, indicating that this has become poly-adenylated. (L) Accordingly, Smart-
seq3xpress sequencing reads (from the Cas13d/dCas12a CRISPR array experiment, Fig. 2C) 
align to the CRISPR arrays. Inset shows where on the gRNA repeats the respective Cas proteins 
cut the gRNAs to process the CRISPR array. Note that the aligned sequencing reads indicate 
that CRISPR array processing has taken place (orange arrowheads) but that processing has not 
proceeded to completion, suggesting that array transcripts were in excess. Note that Cas13d 
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array processing is more efficient for the shorter non-targeting array (1 Cas13d gRNA) than the 
longer targeting array (3 Cas13d gRNAs), also suggesting Cas13d protein availability may make 
array processing a limiting step for long CRISPR arrays. All error bars represent standard 
deviation.  
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Figure S8. Supporting analyses for the PreciCE algorithm. (A) Diagram illustrating the 
PreciCE workflow: Single-cell RNA sequencing data is first preprocessed using Scanpy. If the 
source and target cell states come from different experimental batches, users can opt to run batch 
effect correction with scVI. Next, differential expression analysis is performed between the source 
and target cell states, using scVI for batch-corrected data, or Seurat/Scanpy for uncorrected 
samples. The resulting data is then fed into the PreciCE model to rank transcription factor 
perturbations. (B-C) Predictions for the conversion of pluripotent stem cells to mesoderm cells 
using scRNA-seq data of mouse in vivo embryonic differentiation (B) and human in vitro iPSC-to-
mesoderm differentiation using a small-molecule protocol (this study; C), using the transcriptional 
network reconstructed from the Friedman et al. dataset. (D) To our knowledge, no datasets exist 
for validating simultaneous up- and downregulation, but for the reprogramming of fibroblasts to 
pluripotent stem cells, the PreciCE algorithm predicts multiple genes genes known to be important 
for pluripotent stem cells (SOX2, NANOG, POU5F1/OCT4).  
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Figure S9. Experimental testing of the PreciCE algorithm’s top-ranked gene TBX6 for iPSC-
to-mesoderm conversion. (A) Single-gene CRISPRa of TBX6, MESP1, TBXT, or MIXL1 shows 
activation by 19-53-fold in iPSCs 48 hr post-transfection (Error bars represent standard deviation).  
(B) The positive-control protocol using the Wnt-activating small molecule CHIR99021 
differentiates iPSCs to mesoderm cells in two days, with a morphology that would later be seen 
in cells differentiated using our CRISPR-based systems. (C) Colonies of undifferentiated iPSCs. 
(D-E) Post-sequencing quality control of FACS-sorted cells from single-gene CRISPRa for 
mesoderm conversion (D) and from the small-molecule positive control condition (E). Successful 
sequencing libraries are found in the top right quadrant. Note that the fraction of high-quality 
libraries is low (61% and 41%, respectively) due to unexpectedly inefficient FACS sorting into 
384-well plates. (F) The resulting scRNA-seq data was plotted in a UMAP together with cells from 
a small-molecule-based (CHIR99021) mesoderm differentiation protocol as positive control.   
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Figure S10. Cell fate logic using PreciCE for mesoderm differentiation. (A) We used transient 
transfection of our dCas9/dCas12a all-or-none design for these experiments, as this system 
allows rapid design-build-test cycles with minimal cell-to-cell heterogeneity. (B) Transient 
transfection of plasmids encoding the dCas9/dCas12a system (Fig. 2G) leads to miniVPR-
mediated target gene activation (TBX6) that peaks 48 hr after transfection and then drastically 
declines (Graph represents RT-qPCR data of HEK293T cells; error bars represent standard 
deviation of three replicates). (C) dCas9-KRAB-mediated target gene repression (SOX2) is 
longer-lasting, lasting at least 5 days. (D-E) Light microscopy images of cells 96 hr post-
transfection show morphological changes consistent with differentiation (D) compared to cells 
transfected with non-targeting gRNA (E). (F) A post-sequencing quality control plot shows that 
91% of sequencing libraries (2959 cells) were of high quality and were used for downstream 
analysis. (G) Global data structure of iPSCs subjected to five different perturbations ([TBX6↑], 
[TBX6↑ SP5↑], [SOX2↓ NANOG↓], [TBX6↑ SP5↑ SOX2↓ NANOG↓], [Non-targeting]), showing top 
genes defining each cluster from Fig. 5A. (H) Marker genes showing the presence of iPSCs 
(NANOG), early differentiating iPSCs and mesendoderm (EOMES), mesoderm (MESP1), 
cardiogenic mesoderm (TNNI1), endoderm (SOX17), and mesoderm-derived endothelial cells 
(PECAM1). (I) Cluster distribution of cells from all experimental perturbations (compare UMAP in 
Fig. 5A). Note that [SOX2↓ NANOG↓] powerfully pushes iPSCs out of the pluripotent state and 
toward mesoderm and endoderm using these experimental conditions. Note, too, that 
differentiation is less efficient with [TBX6↑ SP5↑] than [TBX6↑]. We later found this effect likely to 
be caused by dilution of available dCas12a-miniVPR protein (see Fig. S6J), and could be 
corrected by boosting Cas gene expression levels (see Fig. S12A-B). (J) The reason that addition 
of [SP5↑] leads to repression of endothelial cells is likely that SP5 is expressed by early mesoderm 
and endoderm but not endothelial cells (red dashed line). (K) PreciCE algorithm output for 
endoderm to mesoderm, as used to actively block endoderm formation. (L) Parameter plot for this 
conversion. (M-N) Expression of HNF1B and MESP1 are restricted to endoderm and mesoderm, 
respectively, allowing us to use HNF1B and MESP1 as RT-qPCR markers to analyze 
differentiation. All error bars represent standard deviation.  
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Figure S11. Cell fate logic using PreciCE for endoderm differentiation. (A-B) PreciCE 
algorithm output for the conversion of pluripotent stem cells to endoderm (A) and associated 
parameter plot (B). (C-D) Mesoderm (C, through [TBX6↑ SP5↑ SOX2↓ FOXA2↓ SOX17↓]) and 
endoderm cells (D, through [FOXA2↑ SOX2↓]) differ dramatically in their morphology, the latter 
displaying a large, flattened appearance (arrowheads show example cells; dashed lines show cell 
outlines; white round dots are floating dead cells). (E) [FOXA2↑] can only execute iPSC-to-
endoderm conversion if it is combined with repression of the starting state ([SOX2↓]). (F) This 
differs from iPSC-to-mesoderm conversion, where [TBX6↑] generates mesoderm (albeit 
inefficiently) even in the absence of [SOX2↓]. Note that panels E and Fig. 5I came from one single 
experiment so the data for the non-targeting condition are the same for panels E and Fig. 5I. All 
error bars represent standard deviation.  
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Figure S12. Mesoderm differentiation using an engineered iPSC line, and dependence on 
Cas gene expression level.  
(A) Cell fate conversion efficacy is dramatically improved by replacing the weak EFS and hPGK 
promoters driving dCas12a and dCas9, respectively with a strong CAG promoter (B). Compare 
the scattered mesoderm cells in (A) with the densely packed carpet of mesoderm cells in (B; 
rectangles show inset from dashed line). This shows that increased Cas gene expression strongly 
determines efficacy of gene modulation and cell differentiation. (C) Engineered iPSC lines carry 
targeted genomic insertions of Cas genes into the AAVS1 safe-harbor locus (one construct per 
AAVS1 allele). Constitutive expression of a reverse tetracycline transactivator (rtTA) enables 
doxycycline-inducible expression of a dCas12a-miniVPR-GFP activator and a dCas9-mCherry-
KRAB repressor. gRNA constructs are inserted in this cell line through piggyBac-mediated 
integration. (D) With these cell lines, cell differentiation is triggered through the addition of 
doxycycline to the culture medium. (E-G) iPSC lines carrying the Cas13d/dCas12a system (E), 
As-dCas12a/Lb-dCas12a system (F), and dCas9/dCas12a system (G) activate Cas gene 
expression when treated with doxycycline (dark trace represent same cell lines not treated with 
doxycycline). (H) In the dCas9/dCas12a cell line (G), doxycycline administration triggers 
mesoderm differentiation, as shown by the morphological changes (arrowheads) compared to the 
cells expressing non-targeting gRNAs.  
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