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 Short Abstract 

 Accurate prediction of patient survival has important implications for cancer research as it 

 enables the development of personalized treatment plans, guides clinical decision-making, and 

 can be leveraged for clinical trial optimization. We utilized Geneformer, a transformer model 

 pre-trained on single-cell RNA-seq data, to predict overall survival (OS) from bulk tumor gene 

 expression. Adapting Geneformer for bulk tumor analysis and using rank-value encoding, we 

 achieved strong correlations between predicted and true OS (r=0.72, p<0.00001). Our model 

 outperformed traditional machine learning approaches in patient stratification, demonstrating 

 consistent performance across tumor stages and subgroups. This study highlights the potential of 

 pre-trained transformer models for prognostication in cancer, paving the way for refined, 

 personalized treatment strategies. 
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 Abstract 
 Accurate prediction of patient survival outcomes is a critical challenge in cancer research, with 

 the potential to inform personalized treatment strategies and improve patient care. We leveraged 

 Geneformer, a state-of-the-art transformer model pre-trained on a massive single-cell RNA-seq 

 dataset, to develop a model for the prediction of overall survival (OS). We adapted Geneformer 

 for bulk tumor data analysis by appending a task-specific transformer layer and fine-tuning the 

 model on RNA-seq data from The Cancer Genome Atlas (TCGA). Additionally, we employed a 

 rank-value encoding scheme to prioritize informative genes and reduce noise. Our model 

 demonstrated a robust correlation between predicted and true OS, with Pearson correlation 

 coefficient of 0.72 (p<0.00001). Survival analysis revealed significant differences in survival 

 between patient subgroups stratified based on the model's predictions. The Geneformer-based 

 model outperformed traditional machine learning approaches (Random Forest and Neural 

 Network) in patient stratification tasks. Further analysis demonstrated the consistency of the 

 model's performance across different tumor stages and patient subgroups. Our study highlights 

 the potential of leveraging pre-trained transformer models, originally developed for single-cell 

 data analysis, to predict clinically relevant outcomes from bulk tumor gene expression data. The 

 superior performance of our Geneformer-based model underscores its potential to enhance 

 prognostication and treatment decision-making in cancer research. Future work will focus on 

 refining the model architecture, incorporating multi-omics data, and validating its performance 

 on external datasets to further advance its clinical utility. 
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 Introduction 

 The advent of high-throughput single-cell RNA sequencing (scRNA-seq) has revolutionized our 

 understanding of cellular heterogeneity and its role in complex biological processes [1]. By 

 providing a comprehensive snapshot of gene expression at the single-cell level, scRNA-seq 

 enables researchers to unravel the intricate dynamics of gene regulatory networks and cellular 

 states [2]. However, the sheer volume and complexity of scRNA-seq data present significant 

 challenges in extracting meaningful insights. Traditional computational methods often struggle to 

 capture the entire spectrum of gene expression patterns, particularly in the context of rare cell 

 types or transient cellular states [3]. 

 Recent advancements in deep learning, particularly transformer-based models, have shown 

 immense promise in tackling the challenges posed by scRNA-seq data analysis [4]. These 

 models, empowered by their capacity to capture long-range dependencies and contextual 

 information, have demonstrated remarkable performance in tasks such as cell type identification, 

 gene expression prediction, and trajectory inference [5, 6]. Building on these successes, we 

 sought to leverage the power of transformer models to address a critical clinical challenge: the 

 prediction of patient survival outcomes based on gene expression data from bulk tumor samples. 

 In this study, we utilized Geneformer, a state-of-the-art transformer model pre-trained on a 

 massive single-cell RNA-seq dataset (Genecorpus-30M) [7], to develop a predictive model for 

 the prediction of overall survival (OS). While Geneformer has demonstrated outstanding 

 performance in single-cell gene expression prediction and classification tasks [7], its application 

 to bulk tumor data and survival outcome prediction remains largely unexplored. To adapt 

 Geneformer for our specific aims, we implemented key modifications to the model architecture 

 and fine-tuning process. Specifically, we appended a task-specific transformer layer to the 

 pre-trained Geneformer model and fine-tuned the model on bulk tumor RNA-seq data from The 

 Cancer Genome Atlas (TCGA), with the objective of predicting OS. Additionally, we employed 

 a rank-value encoding scheme to prioritize informative genes and reduce noise in the input data 

 [7]. 

 To thoroughly evaluate the performance of our models, we curated a cohort of patients from the 

 TCGA dataset. The subsequent section details the patient selection process and the demographic 
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 and clinical characteristics of the included patients, providing critical context for the 

 interpretation of our results. 
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 Results 

 Patient Cohort and Data Characteristics  . To assess  the predictive capabilities of our models, 

 we curated a patient cohort from The Cancer Genome Atlas (TCGA) dataset. Patients were 

 included if they had available gene expression data, primary tumor samples, and documented 

 records for either Days to Death (DTD) or Days to Last Follow-up (DTLF). Overall survival 

 (OS) was defined as the number of days to death for patients with available DTD data; for 

 patients without a recorded DTD, OS was determined using DTLF. To ensure adequate statistical 

 power, we focused on resection sites and histologies with a minimum of 300 patients with OS 

 data, including at least 25 OS patients with observed OS events (DTD). This resulted in a total of 

 3,254 patient samples evaluated in this study. 

 A complete overview of selected patient demographics and clinical characteristics can be found 

 in  Table 1  . This table provides a detailed summary  of key patient attributes, including age, 

 gender, tumor stage, and other relevant clinical factors. 

 Model Predictions and their Correlation with Clinical Outcomes.  The model's predictive 

 capabilities were evaluated by assessing the correlation between the predicted values and the 

 corresponding true OS values for the entire patient cohort (  Figure 1a  ). A Pearson correlation of r 

 = 0.72 (p<0.00001) was observed across all cancer types, indicating a substantial degree of 

 overall concordance between predicted and true values regardless of tumor resection site or 

 histology. 

 To further investigate the consistency of model performance within different patient subgroups, 

 we stratified the data by resection site and histology (see  Table 1.  ) and computed the correlation 

 between predicted and true values for each subset (  Figure 1.b-h  ). Pearson correlations ranging 

 from 0.67-0.76 were observed, all of which were significant (p<0.00001). 

 These results collectively underscore the efficacy of our fine-tuned Geneformer model in 

 predicting clinically relevant outcomes from bulk tumor gene expression data. The strong 

 correlations observed between predicted and true values, coupled with the consistent 

 performance across different patient subgroups, suggest that this methodology has the potential 
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 to serve as a valuable tool for prognostication and treatment decision-making in different cancer 

 types. 

 Patient Stratification and Survival Analysis. 

 To further explore the clinical implications of our model's predictions, we first calculated the 

 concordance index (c-index) to assess the predictive accuracy of the model for overall survival 

 based on OSDTLF and DTD values. Following this, we employed a patient stratification 

 approach, categorizing patients into three distinct risk groups—nonresponder (NR), moderate 

 responder (M), and responder (R) tertiles—according to their predicted outcomes. This 

 stratification allowed us to investigate the association between the model's predicted risk 

 categories and actual patient survival. 

 For the full unstratified population, the C-index was 0.77, indicating that the model correctly 

 distinguished between patients with different survival risks 77% of the time, demonstrating a 

 good level of concordance between predicted risk scores and actual outcomes.  In order to assess 

 survival differences for a stratified cohort, Kaplan-Meier survival curves were generated for each 

 tertile (  Figure 2.a  ). The log-rank test was employed  to statistically compare the survival 

 distributions between the three groups (  Supplementary.  Table 1  ). The results of the log-rank 

 test for OS revealed highly significant differences in survival between all pairwise comparisons 

 (  Figure 2.a  ; NR vs. R:  ; NR vs. M:  ; R χ 2 =  446 .  3 ,     𝑝    <     0 .  0001 χ 2 =     139 .  6 ,     𝑝 <  0 .  0001 

 vs. M:  ). These findings demonstrate a clear separation of survival χ 2 =  184 .  0 ,  𝑝 <  0 .  0001 

 curves, with patients in the responder tertile (R) exhibiting significantly longer OS compared to 

 those in the moderate responder (M) and nonresponder (R) tertiles. Similarly, patients in the 

 moderate responder  tertile displayed significantly longer OS than those in the nonresponder 

 tertile. 

 To examine the consistency of these survival patterns across different patient subgroups, we 

 calculated C-index and performed stratified survival analyses based on resection site and 

 histology  (  Figure 2.b-h, Supplementary Table 1  ).  While the specific survival patterns varied 

 across subgroups, the overall trend of decreasing survival with increasing predicted risk 

 7 

 99 

 100 

 101 

 102 

 103 

 104 

 105 

 106 

 107 

 108 

 109 

 110 

 111 

 112 

 113 

 114 

 115 

 116 

 117 

 118 

 119 

 120 

 121 

 122 

 123 

 124 

 125 



 remained largely consistent, suggesting the generalizability of our model across a variety of 

 cancer types. 

 These findings collectively highlight the potential clinical utility of our model in stratifying 

 patients into distinct risk categories based on their predicted OS. The significant differences in 

 survival observed between the tertiles underscore the model's ability to identify patients at high 

 risk of adverse outcomes, potentially enabling more targeted and personalized treatment 

 strategies. 

 Stage Analysis and its Impact on Model Predictions.  To further understand the influence of 

 tumor stage on our model's predictions and its relationship with actual patient outcomes, we 

 performed a comprehensive stage analysis. This analysis aimed to evaluate how tumor stage 

 affects both OS and their interaction with the predicted risk categories. 

 Stage-Based Kruskal-Wallis ANOVA  . A two-way Kruskal-Wallis  ANOVA was conducted to 

 examine the effects of stage and true outcome categories (R, M, and NR tertiles based on true OS 

 values) on the actual OS. 

 The analysis revealed a significant main effect of OS category (  ),  𝐹 =  228 .  3 , 𝑝 <  0 .  0001 

 indicating that the true OS significantly differed between the three tertiles, as expected. However, 

 there was no significant main effect of stage (  ) or interaction between  𝐹 =  0 .  07 ,     𝑝 =  0 .  99 

 stage and OS category (  ), suggesting that tumor stage did not significantly  𝐹 =  1 .  41 ,     𝑝 =  0 .  97 

 influence the true OS or its relationship with the risk categories. 

 Stage-Based Spearman’s Rank Correlation  . To further  quantify the relationship between tumor 

 stage and the true labels, we calculated Spearman's rank correlation coefficient. We found a weak 

 negative correlation (  Figure SI-1.a  ;  ), suggesting a slight  𝑟 =−  0 .  089 ,        𝑝 =<  0 .  00001 

 tendency for the OS to decrease with increasing stages.  Predicted Categories Analysis  . We then 

 repeated the two-way Kruskal-Wallis ANOVA using the predicted categories instead of the true 

 categories to assess the interaction between stage and the model's predicted risk groups. 

 The analysis revealed a significant main effect of both stage (  ,  ) and  𝐹 =  15 .  61  𝑝 =  0 .  0014 

 predicted OS category (  ). However, the interaction between stage  𝐹 =  147 .  17 ,     𝑝 <  0 .  0001 
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 and predicted OS category was not significant (  ). This suggests that while  𝐹 =  5 .  09 ,     𝑝 =  0 .  53 

 both stage and the model's predictions independently influenced OS, their combined effect was 

 not significant. 

 Stage-Based Spearman’s Rank Correlation for Predicted Labels  . Spearman's rank correlation 

 was also calculated between tumor stage and the predicted labels. A weak negative correlation 

 was observed (  Figure SI-1.b  ;  ). This suggests a subtle tendency for the  𝑟 =−  0 .  04 ,     𝑝 =  0 .  043 

 model's predicted risk to increase with advancing stage. 

 Comparison of Correlation Coefficients  . We compared  the correlation coefficients between 

 “stage vs true” and “stage vs predicted” categories using Fisher’s r-to-z transformation. The 

 difference was not statistically significant  ;. This suggests that the model's ability to  𝑝 =  0 .  079 )

 capture the relationship between stage and outcome is comparable to the actual relationship 

 observed in the data. 

 Stratification Analysis by Stage  . To further investigate  the potential impact of stage on the 

 model's stratification ability, we compared the predictive accuracy of the model across different 

 stages using the c-index.  We conducted this analysis for the entire dataset as well as within 

 specific subgroups defined by resection site and histology, where stage information was 

 available, aiming to assess whether the model's stratification power is consistent or varies with 

 tumor stage (  Figure 3.a-g  ).For the entire dataset  using OS as endpoint, (  Figure 3a  ), C-index 

 values were .79, .78, .77, and .68 for stages 1, 2, 3, and 4, respectively.  Stratifying the 

 population by resection site and histology revealed significant differences in c-index values 

 across most stages (see  Figure 3.b-g  for details).  These results indicate consistently high high 

 model performance within specific cancer types and stages. 

 Model Comparison and Performance Benchmarking  . Having  established the prognostic 

 potential of our Geneformer-based model, we sought to further contextualize its performance by 

 comparing it against established machine learning approaches. We implemented two widely-used 

 machine learning models - Random Forest (RF) and Neural Network (NN) - and evaluated their 

 ability to stratify patients into clinically meaningful risk groups. This comparative analysis aimed 

 to shed light on the relative strengths and weaknesses of different modeling paradigms in the 

 context of survival outcome prediction from bulk tumor gene expression data. 
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 For the Random Forest model, we explored two distinct feature encoding strategies: one based 

 on gene ranking (  ), mirroring the approach used in our Geneformer model, and another based  𝑅  𝐹 
 𝑟 

 on raw gene counts (  ). This allowed us to assess the impact of feature encoding on the  𝑅  𝐹 
 𝑐 

 performance of the Random Forest model. The Neural Network model was implemented with a 

 standard architecture commonly used for regression tasks. 

 Comparative Analysis  . To rigorously compare the stratification  abilities of the different models, 

 we performed log-rank tests to assess the differences in survival distributions between patient 

 subgroups stratified by each model. Additionally, we computed the correlation coefficients 

 between the true and predicted labels for each model to provide a quantitative measure of their 

 predictive accuracy. Our Geneformer model outperforms other models in this task, as evidenced 

 by the higher correlation coefficients between true and predicted labels (see  Figures 1a  and 

 SI-2  ). 

 Our hypothesis was that the stratification ability would vary between models, with the potential 

 for the Geneformer-based model to outperform the traditional machine learning approaches due 

 to its pre-training on a vast single-cell RNA-seq dataset and its ability to capture complex gene 

 expression patterns. 

 We compared the stratification abilities of different models using log-rank tests to assess 

 differences in survival distributions between subgroups stratified by each model (  Figure 3.h  ). 

 The results highlight the superior stratification performance of our Geneformer model. The 

 log-rank tests, comparing the survival distributions across different models, demonstrate the 

 significant outperformance of our model in this task. 
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 Conclusion 

 In this study, we successfully leveraged the power of Geneformer, a state-of-the-art transformer 

 model pre-trained on single-cell RNA-seq data, to predict OS outcome from bulk tumor gene 

 expression data. By adapting Geneformer to the unique challenges of bulk tumor data analysis 

 and implementing a rank-value encoding scheme, we developed a predictive model that 

 demonstrated strong correlations with patient outcomes. Furthermore, our model exhibited 

 consistent performance across different patient subgroups and tumor stages, highlighting its 

 potential for broad clinical applicability. 

 The superior performance of our transformer-based model compared to traditional machine 

 learning approaches underscores the advantages of leveraging pre-trained foundational models in 

 the context of complex biological data analysis. The model's ability to capture intricate gene 

 expression patterns and its adaptability to diverse clinical contexts positions it as a promising 

 tool for prognostication and treatment decision-making in cancer research. 

 However, we acknowledge that this work represents a stepping stone in the ongoing pursuit of 

 more accurate and clinically relevant predictive models. Future research should explore the 

 development of even more sophisticated gene transformer architectures, potentially incorporating 

 multi-omics data and leveraging larger, more diverse training datasets. Additionally, further 

 validation of our models on external, clinically annotated datasets, including those from 

 commercial sources, is warranted to ensure their robustness and generalizability. 

 By continuing to refine and expand upon these foundational approaches, we can strive towards a 

 future where precision medicine is guided by powerful predictive models, ultimately improving 

 patient outcomes and transforming the landscape of cancer care. 
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 Methods 

 Data Acquisition and Preprocessing.  This subsection  details the acquisition and preprocessing 

 steps applied to the data utilized in this study. 

 Data Sources.  The Cancer Genome Atlas (TCGA) program,  established by the National Cancer 

 Institute (NCI) and National Human Genome Research Institute (NHGRI), provides a 

 comprehensive collection of human cancer genomic and clinical data [ 8]. We downloaded gene 

 expression (RNA-Seq) and clinical data for [cancer type] from the TCGA Data Portal 

 (  https://portal.gdc.cancer.gov/  ). 

 Data Preprocessing.  Several preprocessing steps were  performed to ensure the quality and 

 consistency of the data for downstream analysis: 

 Filtering  : Genes with low expression (counts per  million [CPM] < 10) were excluded to 

 minimize noise. The chosen threshold can be determined based on the specific cancer type and 

 data distribution. 

 Normalization  : Gene expression data was normalized  using voom transformation to 

 account for technical variations and sequencing bias . 

 Clinical Data Integration.  Clinical data downloaded  from TCGA, including patient 

 demographics, disease stage, and overall survival (OS), was integrated with the preprocessed 

 gene expression data. This integration enables exploration of relationships between gene 

 expression profiles and clinical outcomes. 

 Rank Value Encoding.  Following preprocessing, gene  expression data was further encoded 

 using a rank value encoding method inspired by [7]. This approach prioritizes genes that 

 distinguish cell state by ranking them based on their expression within each cell normalized by 

 their expression across the entire dataset. 

 Here, we leverage the pre-built tokenizer module provided by the authors, which streamlines the 

 ranking and normalization process based on a reference dataset (Genecorpus-30M) [7]. This 

 method offers several advantages: 
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 Prioritizes informative genes  : Genes with high expression variability across cells are 

 ranked higher, emphasizing their role in defining cell state. 

 Reduces noise  : Housekeeping genes with ubiquitous  expression are down-ranked, 

 minimizing their impact on downstream analysis. 

 Robustness  : Ranking is less susceptible to technical  artifacts compared to absolute 

 transcript count values. 

 The tokenizer module ensures consistent normalization across datasets, facilitating model 

 generalizability. 

 Model Architecture and Fine-tuning.  We employed the  pre-trained Geneformer transformer 

 model [7] as the foundation for our downstream tasks. Geneformer, originally trained on a 

 massive single-cell RNA-seq dataset (Genecorpus-30M), utilizes six transformer encoder units, 

 each comprising a self-attention layer and a feed-forward neural network layer [7]. Key 

 architectural parameters include an input size of 2,048, an embedding dimension of 256, four 

 attention heads per layer, and a feed-forward size of 512 [7]. The model employs full dense 

 self-attention to maximize the context window during processing. 

 To adapt Geneformer to our specific prediction goals (DTLF and DTD), we implemented a 

 two-step fine-tuning process. First, we extended the pre-trained Geneformer architecture by 

 adding a seventh transformer layer. The weights of this additional layer were initially trained in 

 an autoencoder-like fashion, allowing the model to further refine its representation of the input 

 gene expression data. Subsequently, we appended a task-specific fine-tuning layer and fine-tuned 

 the entire model on the TCGA data to predict DTLF and DTD. 

 For fine-tuning, we utilized all available data points, irrespective of cancer type or histology, to 

 leverage the full diversity of the dataset. We employed a 10-fold cross-validation strategy, 

 training the model on 90% of the data and evaluating its performance on the remaining 10% in 

 each fold. This process was repeated ten times to ensure that predictions were generated for the 

 entire dataset. While we retained the fine-tuning hyperparameters as described by Theodoris et 

 al. (2023) [7] for a controlled comparison, future work may explore the impact of 

 hyperparameter optimization on model performance for our specific prediction tasks. 
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 Benchmark Models and Evaluation.  To provide a comparative assessment of our 

 Geneformer-based approach, we implemented two widely-used machine learning models: 

 Random Forest (RF) and Neural Network (NN). Both models were trained and evaluated using a 

 similar 10-fold cross-validation strategy as described for Geneformer. 

 For the Random Forest model, we explored two distinct feature encoding strategies: one utilizing 

 the ranked gene expression values (  ), aligning with the input format of Geneformer, and  𝑅  𝐹 
 𝑟 

 another employing raw gene counts (  ). This allowed us to assess the impact of feature  𝑅  𝐹 
 𝑐 

 encoding on the performance of the RF model. 

 Given the high dimensionality of the gene expression data, we applied Recursive Feature 

 Elimination (RFE), a simple yet effective feature selection method, to reduce the number of input 

 genes to 100 for each of the benchmark models (  ,  , and  ). This step aimed to enhance  𝑅  𝐹 
 𝑟 

 𝑅  𝐹 
 𝑐 

 𝑁𝑁 

 computational efficiency and mitigate the potential for overfitting. For the implementation of RF 

 and NN, we leveraged readily available functionalities within the TensorFlow framework, 

 utilizing standard architectures commonly employed for regression tasks. 
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 Survival Analysis.  Survival analysis was conducted to evaluate the association between 

 predicted  and actual patient overall survival. Kaplan-Meier curves were generated to visualize 

 the survival probabilities over time for each risk group. The log-rank test, a non-parametric 

 statistical test, was employed to assess the significance of differences in survival distributions 

 between the groups [9]. The log-rank test statistic and corresponding p-values were reported to 

 quantify the statistical significance of the observed differences. Both true and predicted labels 

 were used to stratify patients into risk groups, allowing us to compare the prognostic value of the 

 models' predictions against the actual clinical outcomes. Additionally, we performed stratified 

 survival analyses based on resection site and histology to explore potential subgroup-specific 

 effects. 

 Concordance Index (C-Index) Calculation  . The concordance  index (c-index) [11] was 

 calculated to assess the predictive accuracy of the model for overall survival, providing a 

 measure of how well the model’s predicted risk scores correlate with actual survival outcomes. 

 Log-Rank Test.  The log-rank test is a widely used statistical method for comparing the survival 

 distributions of two or more groups [10]. It is particularly suitable for analyzing time-to-event 

 data, such as DTLF and DTD in our study, where the event of interest is either the last follow-up 

 or death. The log-rank test calculates a test statistic based on the observed and expected number 

 of events in each group at each time point. The null hypothesis of the log-rank test is that there is 

 no difference in survival between the groups. A small p-value indicates evidence against the null 

 hypothesis, suggesting a significant difference in survival distributions. In our study, we 

 employed the log-rank test to compare the survival curves of patients stratified into different risk 

 groups based on both true and predicted labels, enabling us to assess the prognostic value of our 

 models' predictions. 
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 Tables and Figures 

 Table 1.  Demographics of study cohort selected for  analysis from TCGA GDC Data Portal 

 18 

 Category  Subcategory  Lung  Kidney  Breast  Endometrium  Ovary  Overall 

 Total Patients  n  929  765  706  485  369  3254 

 AJCC Pathologic Stage  Stage I  498  415  132  85  1130 

 Stage II  257  86  420  12  775 

 Stage III  150  179  134  14  477 

 Stage IV  18  79  8  7  112 

 Unknown  6  6  12  367  369  760 

 Days to Death  mean (std)  767.3 
 (641.6) 

 945.5 
 (729.9) 

 1878.3 
 (2032.7) 

 965.4 
 (569.3) 

 1179.9 
 (794.2) 

 994.6 
 (840.9) 

 Days to Last Follow Up  mean (std)  908.3 
 (888.1) 

 1235.0 
 (907.8) 

 1183.4 
 (1163.5) 

 1168.1 
 (872.9) 

 1108.7 
 (967.2) 

 1106.2 
 (973.7) 

 os event  yes (no)  251 (678)  99 (666)  27 (679)  55 (430)  214 (155)  646 (2608) 

 Last Known Disease Status  Tumor free  197  218  90  505 

 Unknown  48  65  10  123 

 With tumor  82  92  18  192 

 not reported  600  390  706  367  369  2432 

 Overall Survival  mean (std)  950.3 
 (881.1) 

 1247.9 
 (914.6) 

 1198.8 
 (1186.1) 

 1198.5 
 (867.0) 

 1193.4 
 (970.5) 

 1138.7 
 (977.7) 

 Primary Diagnosis  Adenocarcinoma  476  476 

 Clear cell adenocarcinoma  376  376 

 Endometrioid adenocarcinoma  485  485 

 Infiltrating duct carcinoma  706  706 

 Renal cell carcinoma  389  389 

 Serous cystadenocarcinoma  369  369 

 Squamous cell carcinoma  453  453 

 Vital Status Distribution  Alive  676  666  678  430  154  2604 

 Dead  252  99  28  55  215  649 

 Unknown  1  1 
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 Figure 1. Foundational model predicts patient outcomes.  Correlation between predicted and 
 true overall survival for all histologies and resection sites (  a  ) and every individual histology and 
 resection site (  b-h  ). All correlations are significant  (Pearson's correlation: 

 , adjusted p-values for multiple  comparisons).  𝑝 <  0 .  05/16     ~0 .  0031 
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 Figure 2. Model can stratify patients.  Plots show  Kaplan-Meier survival curve based on model 
 prediction and true labels using top (orange, Responder), middle (green) and bottom (blue, 
 NonResponder) predicted thirds of population for all histologies and resection sites (  a  ) and every 
 individual histology and cancer type  (  b-h  ). Curves  illustrate the estimated survival probability 
 over time, with shaded 95% confidence intervals. The curve was generated based on event 
 duration data, with error bars representing the variability in the survival estimate. A log-rank test 
 was performed to assess differences between the survival distributions of these subgroups 
 (c-statistics and p-value are significant.  ).  𝑝 <  0 .  05/16     ~0 .  0031 
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 Figure 3.  (  a-g  )  Model  can stratify patients regardless of stage.  Plots show c-statistics of 
 logrank test performed to assess differences between the survival distributions of subgroups (see 
 Supplementary Table 1  test-statistics of logrank test)  between different stages for overall 
 survival for all histology cites and cancer types (  a  ) and every single cite and type (  b-g  ).  Gene 
 transformer performs stratify patients better than alternative models.  Plot show c-statistics 
 of logrank test performed to assess differences between the survival distributions of subgroups 
 between different models (TF: Gene Transformer, RF  R  :  Random Forest rank, RF  c  : Random 
 Forest count, NN: Neural Network) for overall survival (  p  ) for all histology cites and cancer 
 types. Histology sites and cancer types are shown at the top of each sub-column. Asterisks show 
 significant differences between c-statistics between stages (  ; Bonferroni  𝑝 <  0 .  05/12 
 correction  ). 
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