
Citation: Yi, J.; Liu, Y.; Jiang, Z.; Liu, Z.

Text Command Intelligent

Understanding for Cybersecurity

Testing. Electronics 2024, 13, 4330.

https://doi.org/10.3390/

electronics13214330

Academic Editor: Aryya

Gangopadhyay

Received: 15 October 2024

Revised: 1 November 2024

Accepted: 3 November 2024

Published: 4 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Text Command Intelligent Understanding for Cybersecurity Testing
Junkai Yi 1 , Yuan Liu 1,*, Zhongbai Jiang 2 and Zhen Liu 1

1 Key Laboratory of Modern Measurement and Control Technology Ministry of Education, Beijing Information
Science and Technology University, Beijing 102206, China; yijk@bistu.edu.cn (J.Y.); liuz@bistu.edu.cn (Z.L.)

2 China Information Technology Security Evaluation Center, Beijing 100085, China; jianzb@itsec.gov.cn
* Correspondence: 2023020399@bistu.edu.cn

Abstract: Research on named entity recognition (NER) and command-line generation for network
security evaluation tools is relatively scarce, and no mature models for recognition or generation
have been developed thus far. Therefore, in this study, the aim is to build a specialized corpus for
network security evaluation tools by combining knowledge graphs and information entropy for
automatic entity annotation. Additionally, a novel NER approach based on the KG-BERT-BiLSTM-
CRF model is proposed. Compared to the traditional BERT-BiLSTM model, the KG-BERT-BiLSTM-
CRF model demonstrates superior performance when applied to the specialized corpus of network
security evaluation tools. The graph attention network (GAT) component effectively extracts relevant
sequential content from datasets in the network security evaluation domain. The fusion layer then
concatenates the feature sequences from the GAT and BiLSTM layers, enhancing the training process.
Upon successful NER execution, in this study, the identified entities are mapped to pre-established
command-line data for network security evaluation tools, achieving automatic conversion from
textual content to evaluation commands. This process not only improves the efficiency and accuracy
of command generation but also provides practical value for the development and optimization of
network security evaluation tools. This approach enables the more precise automatic generation
of evaluation commands tailored to specific security threats, thereby enhancing the timeliness and
effectiveness of cybersecurity defenses.

Keywords: cybersecurity testing; KG-BERT-BiLSTM-CRF; bidirectional long short-term memory
networks; conditional random fields

1. Introduction

In the field of network security, the utilization of automated tools [1] is crucial for
enhancing system defense and response times. Specifically, cybersecurity testing tools
such as penetration testing software and vulnerability scanners play an important role by
automatically generating test commands to simulate attacker actions, thereby detecting and
mitigating potential security vulnerabilities [2]. As automation levels advance, the efficiency
and precision of these tools have become focal points of research and development.

Advances in artificial intelligence and machine learning have further enabled these
tools to process complex data inputs more effectively, with named entity recognition
(NER) [3,4] being one of the key technologies driving improvements. NER swiftly identifies
key informational entities from complex security incident reports or network logs, such as
IP addresses, domain names, and protocol types. This entity information is particularly
crucial for generating targeted test commands, as they directly relate to the network
components that will be tested or monitored. To better meet the needs of cybersecurity,
optimizing NER technology is paramount. This involves training specialized models to
recognize specific entities within the cybersecurity domain, such as vulnerability identifiers
(e.g., CVE tags) [5] and malware names [6]. Additionally, the development of more precise
test command generation algorithms is necessary. These algorithms can utilize identified
entities and related contextual information from the text to automatically construct and
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adjust test commands. In generating these commands, it is essential to consider security
policies, the latest security threat intelligence, and the actual architecture of the system to
ensure the specificity and effectiveness of the test commands.

Despite advances in NER technology across domains such as healthcare, education,
and the military, the cybersecurity field faces unique challenges due to the scarcity of spe-
cialized, publicly available corpora. This limitation restricts the precision and effectiveness
of NER models in identifying cybersecurity-specific entities, as traditional NER models
often lack the adaptability required for dynamic and complex cybersecurity contexts. To
address these issues, this study employs a novel approach that combines data scraping
from the official documentation of cybersecurity tools with a knowledge graph-based auto-
matic annotation process. The knowledge graph [7,8], combined with Transformer-based
validation [9] using information entropy [10], supports the construction of a specialized
corpus tailored for NER in cybersecurity evaluation tools. Furthermore, in this study, a KG-
BERT-BiLSTM-CRF model is introduced, designed to integrate the knowledge graph with
sequence processing, enhancing recognition accuracy for entities specific to cybersecurity.

The main contributions of this paper are as follows:

• Novel corpus construction: A unique corpus specifically tailored for cybersecurity,
NER was constructed by utilizing data scraping from official tool documentation
combined with a knowledge graph-based automatic annotation process.

• Development of KG-BERT-BiLSTM-CRF model: The proposed model innovatively
integrates knowledge graph-based features and BERT with BiLSTM-CRF, significantly
enhancing the accuracy of entity recognition in cybersecurity contexts.

• Transformer-based validation using information entropy: A validation process incorpo-
rating transformers and information entropy was implemented, ensuring high-quality
annotation and robust model performance in dynamic cybersecurity contexts.

The structure of this paper is as follows: Section 2 presents the related work and
a comparative analysis of recent NER techniques. Section 3 details the proposed KG-
BERT-BiLSTM-CRF model, followed by Section 4, which covers the experimental setup,
dataset construction, and model evaluation. Section 5 discusses the findings and limitations.
Finally, Section 6 concludes with insights on the practical implications and directions for
future research on cybersecurity testing tools.

2. Related Work

In this context, named entity recognition (NER) technology in natural language pro-
cessing plays an important role in cybersecurity testing, offering robust support.

Xu et al. [11] proposed a BERT-CNN-BiLSTM model that enhances text classification
performance on small datasets and effectively addresses overfitting by integrating BERT’s
deep semantic understanding, CNN’s feature extraction, and BiLSTM’s sequence process-
ing capabilities. Zhang et al. [12] developed the MGBERT-Pointer model, which leverages
a multi-granularity BERT adapter and an efficient global pointer to significantly improve
the accuracy of Chinese named entity recognition, especially in handling nested entities
and entities with ambiguous boundaries.

Arslan [13] explored the automatic recognition of product names in unstructured
Turkish texts using a BiLSTM-CRF model combined with various embedding techniques.
Wei et al. [14] demonstrated the effectiveness of the BERT-BiLSTM-CRF model in the domain
of educational emergencies, showing how deep learning technologies handle complex
entities effectively within specific domains. Li et al. [15] proposed a model combining
BERT, BiLSTM, and CRF for the heterogeneous recognition of military entities, significantly
enhancing the model’s performance in handling complex military terminology. Li et al. [16]
explored methods for identifying urban underground space disaster entities using text
information extraction techniques. Their study proposed a model combining ALBERT,
BiLSTM, and CRF for entity recognition in text information about urban underground
space disasters.
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Chu et al. [17] proposed a multi-feature fusion transformer (MFT) that significantly
improves the accuracy of named entity recognition in aerospace domain texts by integrating
language features at different levels. Zhang et al. [18] developed an entity recognition
classification framework that systematically examines the diversity of named entity recog-
nition datasets. Wang et al. [19] proposed a named entity recognition model based on
entity trigger reinforcement learning, combining word2vec, BiLSTM, and CRF technologies,
specifically designed for automated Chinese entity recognition.

Shishehgarkhaneh et al. [20] explored the application of transformer models such as
RoBERTa in Australian construction supply chain risk management, demonstrating the
potential of deep learning technologies in handling complex text data. Jeong et al. [21]
showcased the application of deep learning models for information extraction tasks by
combining BERT with Korean modifier relations. Mao et al. [22] introduced a span-level
tagging method to enhance the recognition performance of discontinuous named entities,
employing a simplified tagging scheme and graph convolutional network to boost model
performance. Wang et al. [23] developed RSRNeT, a multimodal network framework for
named entity recognition and relation extraction, showcasing a new approach to integrating
visual and textual information.

Ma et al. [24] introduced a decomposition-based meta-learning framework for few-
shot sequence labeling, significantly enhancing performance in cross-domain few-sample
environments by decomposing tasks into mention detection and type classification, and
processing them sequentially through a meta-learning strategy. Tian et al. [25] introduced a
pre-trained stride detector and entity-type reference based on large-scale language mod-
els in their improved few-shot named entity recognition model, demonstrating superior
performance across various datasets.

He et al. [26] proposed a method for text sentiment analysis of Douban movie reviews
using a BERT-CNN-BiLSTM-Att model, effectively improving the accuracy of sentiment
classification. Han et al. [27] introduced a new named entity recognition model for the
long-term COVID literature, named BERT-BiLSTM-IDCNN-ATT-CRF (BBIAC). Zheng
et al. [28] focused on named entity recognition in Chinese medical texts, presenting an
improved deep learning model incorporating BERT, BiLSTM, improved convolutional
networks (imConvNet), and CRF, named BERT-imConvNet-BiLSTM-CRF. Tikhomirov
et al. [29] applied a BERT-based model with data augmentation techniques for named entity
recognition in the Russian cybersecurity domain, achieving enhanced results by training
on a specialized cybersecurity text collection.

The studies outlined above highlight a variety of named entity recognition (NER)
models, each tailored to meet specific challenges across diverse application domains. To
provide a clearer overview, Table 1 summarizes key models, their application fields, and
the strengths and limitations associated with each approach.

Table 1. Summary of models and their performance characteristics.

Model Method Application Domain Advantages Limitations

BERT-CNN-BiLSTM Small dataset text
classification

Effectively reduces
overfitting in small
datasets, improving

accuracy.

Complex structure,
high computational

cost.

MGBERT-Pointer Chinese named entity
recognition

Improves accuracy
for nested and

ambiguous boundary
entities.

Requires high
annotation accuracy,

limited
generalizability to
other languages.

Bi-LSTM-CRF
Non-English

language product
name recognition

Adapts well to
linguistic

irregularities.

Difficult to generalize
to other languages or

domains.
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Table 1. Cont.

Model Method Application Domain Advantages Limitations

BERT-BiLSTM-CRF

Specialized domain
entity recognition
(e.g., education,

military)

Handles complex
terms, robust in

specialized contexts.

Strong dependency
on specific domains,

limited transferability.

Multi-Feature Fusion
Transformer (MFT)

Aerospace text
recognition

Enhances recognition
accuracy for entities
in specialized fields.

High computational
complexity, long
processing times.

Graph Convolutional
Network +

Span-Level Tagging

Discontinuous entity
recognition

Improves recognition
for discontinuous

entities.

Challenging to
process semantically
disjointed contexts.

Decomposition-
Based Meta-Learning

Cross-domain,
low-resource
environments

Enhances tagging
accuracy in

low-resource
scenarios.

Limited adaptability
to new domains.

RSRNeT Multimodal
Network

Entity recognition
and relation
extraction

Combines visual and
textual data,
enhancing

cross-modal
recognition.

High annotation
requirements, high
model complexity.

BERT-BiLSTM-
IDCNN-ATT-CRF

Long-text entity
recognition (e.g., the

COVID literature)

Improves entity
recognition in lengthy

texts.

High memory
requirements when

processing long
documents.

Despite advancements in the fields of named entity recognition and command gen-
eration, how to effectively combine these technologies to enhance the intelligence and
adaptability of automated testing tools [30] remains a hot topic in the current research.
Additionally, handling and protecting sensitive information generated and used in auto-
mated testing is a key aspect of ensuring the reliability of cybersecurity tools. These studies
not only push the boundaries of technology but also have a profound impact on practical
cybersecurity measures.

3. KG-BERT-BiLSTM-CRF Model

This section primarily introduces the structure of the KG-BERT-BiLSTM-CRF model
and provides a detailed explanation of the roles and functions of its various components.

3.1. KG-BERT-BiLSTM-CRF

The KG-BERT-BiLSTM-CRF model, as shown in Figure 1, is a composite model that
integrates BERT [31], graph attention network (GAT) [32], bidirectional long short-term
memory (BiLSTM) [33], and conditional random fields (CRF) [34]. In this model, the GAT
component utilizes a knowledge graph (KG) to construct the adjacency matrix, which
enhances the model’s ability to leverage relational information between entities. This
adjacency matrix is critical for effectively applying the attention mechanism across different
nodes (entities) within the graph, enabling more precise entity recognition. Primarily
employed for named entity recognition (NER), the model combines these four distinct tech-
niques to address various aspects of sequence data, thereby enhancing overall performance
and accuracy.
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Figure 1. Structure diagram of KG-BERT-BiLSTM-CRF model.

In the KG-BERT-BiLSTM-CRF model, BERT, BiLSTM, GAT, and CRF each play different roles.

• BERT acts as the frontend of the model, utilizing its transformer-based mechanism to
deeply encode the input data related to network security evaluation tools, generating
sub-vector sequences for the text.

• The GAT layer receives the vectors generated by the BERT layer and combines them
with the knowledge graph constructed in this study to calculate entity embeddings.

• The BiLSTM model also processes the output from BERT further, using forward
and backward LSTM networks to encode and capture the semantic information and
contextual relationships of words in the sequence.

• A specially designed fusion layer concatenates the output vectors from both the GAT
and BiLSTM layers.

• The CRF layer performs labeling based on the output from the fusion layer, leveraging
the learned contextual information to make accurate label predictions for each word
or character, ultimately producing the named entity recognition results.

3.2. The BERT Pretrained Model

In the KG-BERT-BiLSTM-CRF model, BERT serves as the frontend, responsible for
understanding and encoding the meaning of the input text, providing deep, context-
aware word vector representations. Through its pre-trained deep bidirectional transformer
network, BERT generates different word vectors for the same word depending on its
context, offering greater flexibility and accuracy, particularly in handling polysemy.

This section focuses on fine-tuning the BERT model using proprietary data from the
network security evaluation domain. As shown in Figure 2, data were collected from official
websites, academic papers, professional blogs, and the patent literature related to network
security. These data were used to perform the customized fine-tuning of the BERT model.
The aim of this process was to enhance BERT’s accuracy in processing and understanding
security-specific terminology and contexts. Through this fine-tuning, the performance of
the BERT model was significantly improved, particularly in supporting automated text
processing and analysis tasks for network security evaluation tools, demonstrating greater
adaptability and accuracy.
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3.3. GAT Model

The core of the GAT lies in its use of the self-attention mechanism [35] to explicitly
learn the weights between nodes, allowing GAT to not only adapt to different types of
graph structures but also handle the heterogeneity of node connections within the graph.

In this study, based on each entity in the knowledge graph constructed during the
auxiliary annotation process, the GAT model updates the feature representation of each
entity using the contributions of its neighboring entities and the attention mechanism, as
shown in Equation (1).

h′v = σ( ∑
u∈N(V)

αvuwhu) (1)

In this context, hu represents the feature vector of entity u, w is the learnable linear
transformation matrix, N(v) denotes the set of neighboring entities of entity v, and σ is
the ReLU [36] activation function. The attention coefficient between entity v and entity u,
denoted as αvu, is computed using Equation (2).

αvu =
exp(LeakyReLU(aT [whv

∣∣∣∣whu]))

∑k∈N(v) exp(LeakyReLU(aT [whv||whu]))
(2)

3.4. BiLSTM Model

In the KG-BERT-BiLSTM-CRF model, the BiLSTM network processes and refines the
outputs generated by BERT, enhancing the model’s ability to handle sequential data and
capture long-term dependencies. The bidirectional LSTM consists of two LSTMs—one
processing the sequence forward and the other backward, as shown in Equations (3) and (4).
The outputs from both directions are concatenated to form a comprehensive representation,
as illustrated in Equation (5).

→
ht = LSTM(

→
xt,

→
ht−1) (3)

←
ht = LSTM(

←
xt,

←
ht−1) (4)

ht = [
→
ht,
←
ht] (5)

LSTM, a special type of RNN (Recurrent Neural Network), includes an input gate, a
forget gate, and an output gate. The forget gate determines which information to discard,
the input gate decides what information to update into the cell state, and the output gate
determines what information to output.
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Through the aforementioned calculations, the final output sequence is obtained as
O = {o1, o2, o3, . . . , on}.

3.5. Fusion Layer

In the KG-BERT-BiLSTM-CRF model, the fusion layer plays a critical role by effectively
concatenating the outputs from both the GAT layer and the BiLSTM layer, generating
a comprehensive feature representation. This operation leverages the strengths of both
techniques, resulting in a richer and more informative feature set, which is crucial for the
subsequent Named Entity Recognition (NER) tasks.

Specifically, the GAT layer captures the structural relationships between entities using
a knowledge graph and produces a sequence of feature representations. The output from
the GAT layer can be denoted as H = [h1

′, h2
′, h3

′, . . . , hn
′], where each h′v represents the

feature representation of the i-th entity. On the other hand, the BiLSTM layer processes
the input sequence and captures contextual dependencies within the text, resulting in an
output sequence O = {o1, o2, o3, . . . , on}.

As shown in Figure 3 and Equation (6), the primary objective of the fusion layer is to
concatenate h′v and O, forming a fused feature sequence hi

′.

hi
′ = [oi

∣∣∣∣h′vi] (6)
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Here, the symbol “||” represents the concatenation operation, which connects the
output vectors from the GAT and BiLSTM layers along their dimensions. This concatenated
vector hi

′ contains both the entity relationship information from the GAT layer and the
contextual information from the BiLSTM layer.

This fusion mechanism is of significant importance. The feature representations from
the GAT layer capture the structural relationships between entities, while those from
the BiLSTM layer capture the sequential and contextual information within the text. By
concatenating these two types of information, the model can develop a more holistic
understanding of each word or entity in the text and its relationship with other entities.
This fusion method is particularly beneficial in handling tasks that involve polysemous
words or complex dependencies between entities and their contexts, thereby improving the
model’s overall performance.

3.6. The Conditional Random Field

In the KG-BERT-BiLSTM-CRF model, the CRF layer plays a crucial role in the sequence
labeling task, particularly during the final labeling decision stage. The primary function of
the CRF layer is to optimize and refine the label sequence at the model’s output, ensuring
that the final labeling results are both accurate and consistent across the entire sequence.
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Unlike classification models that evaluate each label independently, the CRF layer
employs a global optimization approach. By learning the transition probabilities between
labels, it enables optimal labeling decisions at the sequence level.

By receiving the output sequence H from the fusion layer, the CRF defines the condi-
tional probability of the label sequence Y, as shown in Equation (7).

P(Y|H) =
exp(s(H, Y))

∑ Y′exp(s(H,Y′))
(7)

Here, s(H, Y) represents the score of sequence H and its corresponding label sequence
Y, with the calculation formula provided in Equation (8).

s(H, Y) = ∑n
i=1 (wyi hi

′ + byi + Tyi−1,yi ) (8)

Here, wyi and byi are the weight and bias corresponding to label vi in the CRF layer,
and Tyi−1,yi represents the transition score, indicating the score for transitioning from label
yi−1 to label yi.

3.7. Model Optimization

In this study, an enhanced approach based on the BERT model was employed by
adding GAT, BiLSTM, and CRF layers on top of the initial BERT model to further improve
the model’s recognition capability and accuracy in sequence labelling tasks. BERT, as a pow-
erful language representation model, has demonstrated outstanding performance across
various natural language processing tasks by capturing rich linguistic features through
pre-training. However, when faced with specific sequence labelling tasks, relying solely on
features extracted by BERT may not fully meet the high precision requirements. Therefore,
GAT, BiLSTM, and CRF layers were introduced in this study. The GAT layer effectively
leverages the knowledge graph constructed in this research to capture relationships be-
tween different entities. The BiLSTM layer captures contextual information within the
sequence, while the CRF layer optimizes the model’s labelling decisions across the entire
sequence, particularly by handling dependencies between labels, thus avoiding illogical
label sequences.

Moreover, to further enhance the model’s performance, a meticulous adjustment of the
learning rate was implemented. The learning rate is a crucial hyperparameter that controls
the speed of parameter updates during model training, and an appropriate learning rate
setting is essential for achieving better training outcomes. In the experimental process,
various learning rate adjustment strategies were explored, including fixed learning rates,
dynamic learning rate adjustments, and learning rate warm-ups, to find the optimal config-
uration. The introduction of these strategies not only accelerated the model’s convergence
but also mitigated the issue of overfitting to some extent, resulting in higher accuracy across
multiple sequence labelling tasks.

4. Experiment

This section primarily introduces the construction of the command-line dataset for
cybersecurity testing tools and provides a detailed analysis of the model performance exper-
iments, model comparison experiments, dataset comparison experiments, and command
generation experiments conducted.

4.1. Dataset

A key challenge in cybersecurity entity recognition is the limited availability of spe-
cialized, publicly accessible corpora, especially for entity data specific to cybersecurity
evaluation tools. To address this, in this study, the Scrapy framework was utilized to
systematically scrape data from official documentation of widely used cybersecurity tools,
aiming to construct a corpus tailored for entity recognition in cybersecurity contexts. This
data scraping process involved the following steps:
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• Selecting Target URLs: official documentation pages of prominent tools, including
OpenVAS, Metasploit, OWASP, Tcpdump, and SQLMap, were identified to ensure
comprehensive coverage of usage guidelines, configuration details, and command
syntax.

• Extracting and Filtering Data: using Scrapy’s 3.6.1 CSS selectors and XPath, in this
study, relevant content was selectively retrieved while filtering out non-essential
elements, such as navigation bars and ads, to ensure data quality.

• Cleaning and Formatting Data: the extracted content was processed to remove HTML
tags and irrelevant text, then structured into machine-readable formats suitable for
NER tasks.

The selection of these cybersecurity evaluation tools was based on a structured pro-
cess to ensure their relevance, functionality, and documentation adequacy for research
objectives. Tools were chosen to support diverse cybersecurity testing scenarios, including
vulnerability scanning, penetration testing, and log analysis. The selection criteria included
the following:

• Functionality Coverage: each tool needed to support essential tasks across multiple
cybersecurity testing scenarios.

• Reputation and Industry Usage: only tools widely recognized in both industry and
academic research were prioritized to ensure alignment with established cybersecurity
practices.

• Documentation Accessibility: comprehensive, publicly accessible documentation was
essential, facilitating effective data scraping and high-quality corpus construction.

By following the aforementioned steps, this research successfully developed a special-
ized corpus tailored for cybersecurity entity recognition within cybersecurity evaluation
tools. The corpus comprised six hundred entries each from OpenVAS, Metasploit, OWASP,
Tcpdump, and SQLMap, ensuring an equal distribution of data across different tools. This
consistent number of entries across all tools was intentionally designed to enhance the
fairness of model construction and validation, minimizing bias that could arise from data
imbalance. Consequently, this balanced dataset provides a robust foundation for fair
comparison and experimental validation of the entity recognition models.

4.2. Construction of Knowledge Graph

Data were collected from official websites, academic papers, blogs, and patents in
the field of network security evaluation, focusing primarily on the five commonly used
security assessment tools of OpenVAS, Metasploit, Nikto, Tcpdump, and SQLMap. In this
study, the aim was to extract relevant information from these data sources, such as tool
names, functional features, and certain IP addresses, and to systematically categorize and
organize this information. A targeted knowledge graph was constructed by establishing
relationships between different types of entities, aiding in subsequent manual annotation
processes.

Table 2 below shows the initially constructed entity types and the number of distinct
entities within each type.

There are instances of functional overlap or similarities in parameter formats among
multiple security tools, which may create challenges during the information extraction
process. To resolve this issue, in this study, a comprehensive entity relationship model was
carefully designed. Through defining and refining entity relationships, in this study, tool
features with similar functions or parameter formats were effectively differentiated and
managed. Moreover, the established entity relationship model not only optimized the data
organization and structuring but also provided robust support for subsequent automated
annotation and entity recognition, greatly enhancing the utility and practical value of the
knowledge graph.

Table 3 below presents the specific entity relationship settings.
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Table 2. Entity types and quantity of types table.

Entity Entity Type

Tool 5
Function 84

IP 50
Configuration 50

Module 300
RHOSTS 50
LHOST 50

Interface 10
Data_packet 20

File 50
Source port 30

URL 30
Database 20

Data_table 20
Port 30

Report 50

Table 3. Special entity relationship table.

Entity 1 Entity 2 Entity Relationship

Tcpdump Port Tcpdump-Port
Sqlmap UR Sqlmap-URL
Nikto URL Nikto-URL
Nikto Port Nikto-Port

Openvas Function Openvas-Function
Metasploit Function Metasploit-Function

Tcpdum Function Tcpdum-Function
Nikto Function Nikto-Function

SQLMap Function SQLMap-Function

4.3. Entity Tagging

As shown in Figure 4, the basic architecture and workflow of the automatic entity
annotation system are presented. The process is divided into the two main stages of entity
annotation and entity annotation verification.
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In this study, the constructed knowledge graph for a network security assessment tool
is used to automatically annotate entities in a corpus related to network security assessment
tools. In this process, the knowledge graph serves as a foundational resource, enabling
the automatic identification and annotation of entities in the corpus text. This method
effectively utilizes the information stored in the knowledge graph, such as tool names,
parameters, and operational functions, to assist in identifying corresponding entities in
the corpus text, thereby automating the annotation process. This automation not only
improves annotation efficiency but also enhances the consistency and accuracy of the
dataset, providing essential data for enhancing the development and optimization of future
network security assessment tools.

After the entity annotation, auxiliary verification using transformation and informa-
tion entropy is conducted to ensure the accuracy of the entity annotations. Initially, a
pretrained transformer model is used to generate contextually relevant embedding vectors
for the annotated entities within the input text. Embedding vectors vi for the entity words
wi in the input text are generated using Equation (9). If an entity consists of multiple words
w1, w2, . . . . . . , wn, Equation (10) is used to aggregate these word vectors into a single vector
through an aggregation method.

vi = Trans f ormer Model(wi) (9)

vE =
1
n

n

∑
i=1

vi (10)

After obtaining the entity embedding vectors, they are compared with the embeddings
of each entity category in the knowledge graph. The similarity sc between the entity
embedding vectors vi or vE and each category embedding vector µc is calculated using
Equation (11).

sc =
vE · µc

∥ vE ∥∥ µc ∥
(11)

After obtaining the similarity sc, it is converted into the probability p(c|vE) using
Equation (12).

p(c|vE) =
exp(sc)

∑k∈C exp(sk)
(12)

Here, C is the set of all categories. Finally, based on the probabilities obtained, the infor-
mation entropy for each entity is calculated using Equation (13) to evaluate the uncertainty
of the classification. Higher information entropy indicates greater uncertainty.

H(X) = −∑
c∈C

p(c|vE) log p(c|vE) (13)

Considering that the errors introduced during the automated annotation process may
affect the quality of the dataset, in this study, an important follow-up step—manual review—is
also included. Manual review ensures the final quality of the dataset, thereby guaranteeing
the reliability of the research outcomes and the effectiveness of its applications.

4.4. Experimental Setup

In this study, our proposed method on the Python 3.8 simulation platform was simu-
lated. Our model was constructed using PyTorch 2.2.1 and runs on a single Nvidia GeForce
RTX 2060 GPU. In this study, the Adam optimizer was used for model optimization. The
simulation parameters are provided in Table 4.
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Table 4. KG-BERT-BiLSTM-CRF model hyperparameter table.

Parameter Name Parameter Values

dropout 0.1
LSTM_size 256
batch_size 32

Learning_tate 5 × 10−5

max_sep_len 128

Additionally, early stopping measures were introduced to prevent overfitting, termi-
nating training if the validation loss did not improve for 50 consecutive epochs.

4.5. Evaluation Metrics

The evaluation of entity recognition models involves the following three core per-
formance metrics as standard benchmarks: precision, recall, and the F1 score, which
combines precision and recall into a single measure. The F1 score is particularly important
because it balances precision and recall, providing a comprehensive measure of the model’s
effectiveness. The mathematical definitions of these metrics are provided below.

(a) Precision

Precision [37] calculates the ratio of correctly identified entities to the total number of
entities that the model identified (correctly and incorrectly). It reflects the accuracy with
which the model identifies entities as being relevant.

P =
TP

TP + FP
(14)

(b) Recall

Recall [38] measures the proportion of actual entities that were correctly identified by
the model, accounting for the sensitivity of the model towards capturing relevant entities.

R =
TP

TP + FN
(15)

(c) F1 Score

The F1 score [39] is the harmonic mean of precision and recall, offering a balance
between the precision and recall metrics. It is particularly useful when the classes are
imbalanced, providing a more realistic measure of model performance.

F =
2× P× R

P + R
(16)

These metrics together furnish a robust framework for assessing the performance of
named entity recognition systems, allowing for nuanced insights into their operational
effectiveness.

4.6. Experimental Results

• Experiment I: KG-BERT-BiLSTM-CRF Model Training Experiment

The corpus constructed for evaluating cybersecurity testing tools is stratified and
divided, with 10% each allocated for validation and testing, and the remaining 80% for
training. This ensures an even distribution of annotated entities across the training, valida-
tion, and testing sets, and the model is set to run for 100 epochs.

Figures 5–7 show that the KG-BERT-Bi-LSTM-CRF model achieves superior precision,
recall, and F1-score metrics, with respective values of 99.91%, 99.96%, and 99.97%. These
improvements validate the model’s efficacy and precision in relevant tasks. The results further
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demonstrate that the model excels across all evaluation metrics, maintaining a balanced
performance in precision and recall and yielding a high F1-score as a comprehensive metric.
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Table 5 provides detailed precision, recall, and F1-score values across various anno-
tated entity types, supporting the model’s robust performance.
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Table 5. Experimental result 1 (partial entity results only).

Entity Type P R F1

Tool 0.9991 0.9992 0.9993
Ip 0.9961 0.9963 0.9965

Function 0.9998 0.9994 0.9996
Configuration 0.9981 0.9995 0.9987

• Experiment II: Model control experiment

In this study, the proposed model is compared with other relevant named entity
recognition models. The first control experiment uses a standalone BERT-based NER
model, while the second employs a BERT-BiLSTM NER architecture.

Table 6 and Figure 8 present the results of the comparative studies. Notably, the
KG-BERT-BiLSTM-CRF model shows significant performance improvements over the
conventional BERT and BERT-BiLSTM architectures.

Table 6. Experimental result 2.

Identification Model P R F1

BERT 0.7995 0.7998 0.7997
BERT-Bi-LSTM 0.9564 0.9316 0.9585

KG-BERT-Bi-LSTM-CRF 0.9991 0.9996 0.9997
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Figure 8. Model precision Recall and F1-score comparison diagram.

As depicted in Figure 9, a comparative analysis of the loss rates incurred by the three
distinct models reveals several key insights. Initially, the KG-BERT-Bi-LSTM-CRF model
exhibits a substantially lower initial loss rate compared to the BERT model, suggesting a
more expedited convergence to a stable state. Subsequently, when stability is achieved, the
KG-BERT-Bi-LSTM-CRF model exhibits a reduced variability in the loss rate compared to
the BERT-Bi-LSTM model, indicating a higher degree of performance stability.
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• Experiment III: Cybersecurity Testing Command Generation

In this study, the previously employed entity recognition model is integrated with a
curated database of command-line inputs for cybersecurity testing tools. Initially, a named
entity recognition model is used to extract key information from the text, identifying entities
such as tools (‘tool’), functions (‘function’), and IP addresses (‘ip’). These recognized entities
are then mapped to their respective entries in the command-line database. Through this
mapping, the required command lines are autonomously generated based on the input text.

Table 7 displays the outcomes for a subset of the test cases employed.

Table 7. Experimental result 3.

Test Statement Tool Function Command Line

I need to use OpenVas
now, please enable
OpenVas for me.

OpenVas
(22.7.3) enable openvas-start

I want to use OpenVas,
which has the function
of creating a target with

an IP address of
192.168.1.1.

OpenVas creating a target gvm-cli socket --xml <create_target><name>Target
Name</name><hosts>192.168.1.1</hosts></create_target>

Use OpenVas to obtain a
list of reports. OpenVas obtain a list of reports gvm-cli socket --xml “<get_reports/>”

Experiment III results demonstrate the model’s capability to accurately recognize key
information in the NER task and validate its practical application when integrated with the
command-line database. Through integration, the system automatically extracts keywords
such as “tool”, “function”, and “target IP” from user instructions and maps them to command-
line templates in the database, generating the corresponding command-line statements.

5. Discussion

In this study, named entity recognition (NER) technology in the cybersecurity field is
significantly advanced by introducing the KG-BERT-BiLSTM-CRF model, demonstrating
its outstanding performance in accurately identifying specific cybersecurity entities. The
uniqueness of this model lies in its integration of knowledge graphs and its direct impact
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on the attention mechanisms within the graph attention network (GAT), enhancing the
precision and adaptability of identifying complex cybersecurity entities. Compared to
traditional NER systems that rely on textual data, this research method effectively uti-
lizes the relational information from knowledge graphs, thereby providing significant
improvements in accuracy and adaptability.

Additionally, an information entropy method is employed in this study, based on
transformer for validating entity annotations. This method enhances annotation reliability
by quantifying uncertainty, providing an effective way to improve data annotation quality
without extensive manual effort. This approach has not been widely applied in the works of
Dasgupta et al. [40] whose research, although demonstrating various deep learning-based
NER algorithms on cybersecurity datasets, did not fully address the issues of annotation
quality and handling dynamic changes.

Moreover, compared to the Bi-LSTM with CRF approach used by Ma et al. [41], our
model shows better robustness in handling dynamic cybersecurity terms and scenarios.
Furthermore, although Fang et al. [42] have made significant progress in processing Chinese
cybersecurity NER by combining graph convolutional networks with hybrid embeddings,
the model’s adaptability and accuracy is significantly enhanced in our study by integrating
broader semantic and syntactic information across multiple languages.

In summary, the KG-BERT-BiLSTM-CRF model sets a new standard in NER technology
for the cybersecurity domain through its unique integration of advanced techniques, clearly
outperforming existing NER systems. This model provides more intelligent and efficient
technological support for cybersecurity defenses, broadening the applicability of NER
systems in specialized domains.

6. Conclusions

This research employed a custom-built corpus specific to the domain of cybersecurity
testing for the training process, wherein the KG-BERT-Bi-LSTM-CRF model exhibited
notable enhancements in performance when contrasted with models that were solely based
on BERT or the fusion of BERT and Bi-LSTM. These outcomes not only corroborate the
efficacy of the composite model in intricate named entity recognition tasks, but also by
leveraging the mapped relationship with the cybersecurity testing command line database,
accomplish proficient and precise command line generation. This underscores the model’s
superior potential for application in terms of both entity recognition accuracy and command
line generation efficiency.

The findings of this study have practical value for cybersecurity operations, particu-
larly in automating the generation of testing commands for diverse cybersecurity scenarios.
Integrating this model into existing cybersecurity tools could significantly reduce manual
workload, improve response times, and enhance the accuracy of vulnerability detection in
real-world network environments. Furthermore, this model could be adapted for use in
dynamic cybersecurity defense systems, autonomously updating entity recognition and
command generation processes in response to emerging threats, thereby strengthening the
robustness of network security defenses.

Future research may further refine the model architecture and training process by
integrating advanced self-attention mechanisms and investigating more efficacious se-
quence labelling strategies. Moreover, augmenting the corpus to encompass a broader
spectrum of cybersecurity incidents and scenarios is crucial for enhancing the model’s
generalization capabilities. Furthermore, research should concentrate on the efficiency
and stability of model deployment within real network environments, as well as on the
effective integration of real-time data updates to counteract rapidly evolving cybersecurity
threats. The approach will facilitate the development of more automated and intelligent
cybersecurity defense systems, thereby exerting a profound impact on the cybersecurity
domain.
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