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Abstract 

Proteins perform substrate binding and catalysis, aided by conformational dynamics. A mixture of 

short- and long-range inter residue interactions are responsible for orchestrating both structural 

changes and the biological activity. Hence, it is critical to understand the relationship between 

protein dynamics and function and identify the responsible residues, as this information can be 

crucial for developing effective therapeutics or for altering protein functions for biotechnological 

purposes. Existing computational methods for the predictions of functional residues are trained on 

sequence, structural and experimental data, but they do not explicitly model the influence of 

evolution on protein dynamics. This overlooked contribution needs to be considered as it is known 

that evolution can fine tune protein dynamics through compensatory mutations, either to improve 

the proteins performance or diversify its function maintaining the same fold scaffold. To model 

this critical contribution, we introduce DyNoPy, a computational tool that combines residue 

coevolution analysis with molecular dynamics (MD) simulations and using network analysis it 

pinpoints important residues for functional dynamics. We applied DyNoPy to an example of 

class-A and class-C β-lactamases. SHV-1 with its rich experimental data serves as a test case with 

known functional annotations, while PDC-3 is used to show the method’s predictive power on a 

less characterised protein. DyNoPy successfully identifies residues with annotated function and 

facilitates the explanation of mutations at previously unexplored sites. The results have significant 

potential for investigation of new clinically relevant β-lactamase variants and confirms the 

potential of DyNoPy to inform drug design strategies.  
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Significance 

Protein function is mediated by structural dynamics, and it is now accepted that mutation events 

can directly impact dynamical properties. To model and predict these effects, it is essential to 

examine interactions at the residue level. Molecular simulations and sequence coevolution 

analysis separately offer insights into physical interactions and evolutionary changes. DyNoPy is 

an integrated computational method to discover coevolved residue pairs that contribute to protein 

functional dynamics. These residues are represented as a network where specific groups of nodes 

are coupled with protein function. Unveiling the critical roles of these residues and their dynamic 

interactions is shown to explain pathogenic effects of mutations and can be used to guide rational 

design of protein function. 
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Introduction 

Quantifying the contribution of individual residues or residue groups to protein function is 

important to estimate the pathogenic effect of mutations (1). Identifying the functional roles of 

individual residues has primarily been done through mutagenesis experiments (2). Bioinformatics 

methods have complemented these approaches through analysis of multiple sequence alignments 

(MSA) of homologous proteins and structural data (3-8). Among these methods, computational 

techniques that can decode inter-residue evolutionary relationships from MSAs have paved the 

way for machine learning (ML) based strategies that can predict protein structure (9-12), stability 

(13), and function (7) and extend the scope of computational protein design (14-16). A most recent 

approach has combined experimental data from three proteins on stability and function with 

sequence and structural features to train a ML model to predict functional sites (17). 

Functional sites are often regulated by both local and global interactions. Changes in these 

interactions are instrumental for functional events like substrate binding, catalysis, and 

conformational changes (18). While techniques described earlier have exploited the sequence and 

structure relationship of proteins, they do not directly consider the time evolution of functional 

events in their predictions. The development of physical models of protein dynamics and the 

increase in available computational power has stimulated the adoption of computational 

techniques (19, 20) to investigate the conformational dynamics of proteins, an essential 

component of the many biological functions (21, 22). At the same time, it has been established 

that evolution through compensatory mutations in dynamics regions, like hinges and loops, can 

fine tune protein dynamics for function and introduce promiscuity in dynamics, diversifying 

biological function. Assuming that protein functional dynamics is conserved during evolution, 

significant information on dynamic regions and substrate recognition sites should be recoverable 

using inter residue coevolution scores extracted from MSAs (23, 24). Coevolution analysis and 

Molecular Dynamics (MD) simulations have independently (25) and synergistically been 

combined in the past to identify important residues for function (26-30). Yet a tool that combines 

hidden information on dynamics from evolution with direct information on local and global 

dynamics from conformational ensembles from MD is not available.  
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We present DyNoPy, a computational method that can extract hidden information on 

functional sites from the combination of pairwise residue coevolution data and powerful 

descriptors of dynamics extracted from the analysis of MD ensembles. The method can detect 

coevolved dynamic couplings, i.e. residue pairs with critical dynamical interactions that have been 

preserved during evolution. These pairs are extracted from a graph model of residue-residue 

interactions. Communities of important residue groups are detected, and critical sites are identified 

by their eigenvector centrality in the graph. A comprehensive overview of the method is shown in 

Figure 1. Two β-lactamases from distinct families, SHV-1 from class A and PDC-3 from class C 

(31, 32), were used to demonstrate potential use of DyNoPy. In these cases, DyNoPy can 

successfully detect residue couplings that align with previous studies, guide in the explanations of 

mutation sites with previously unexplained mechanisms and provide predictions on plausible 

important sites for the emergence of clinically relevant variants.  
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Results and Discussion 

β-lactamases are a group of enzymes capable of hydrolysing β-lactams, conferring resistance to 

β-lactam antibiotics (33). These enzymes are evolving rapidly, as single amino acid substitutions 

are sufficient to drive their evolution and increase their catalytic spectrum and inhibitor resistance 

profile (34). Extended-spectrum β-lactamases (ESBLs) and inhibitor resistant β-lactamases 

(IRBLs) are frequently identified from clinics, highlighting their global impact on antibiotic 

resistance (35). The rapid evolution of β-lactamase proteins and their clinical significance (34) 

makes them an ideal target for assessing the robustness of DyNoPy. 

We have applied DyNoPy to two model enzymes from different β-lactamase families: class A 

β-lactamase SHV-1 and class C β-lactamase PDC-3 (31, 32) (Figures S1 and S2). Both class A and 

class C β-lactamases comprise an α/β domain and an α helical domain, with the active site situated 

in between (36, 37). Moreover, both enzymes target the carbonyl carbon of the β-lactams using a 

serine residue (38, 39). Despite these similarities, the structures of class A and class C 

β-lactamases are remarkably different (Figure 2). 

SHV-1 is a very well characterised protein system with wealth of information on mutations 

and their corresponding effects on protein function and in contrast PDC-3 remains to be 

characterised. Detailed structural information on these proteins can be found in the supplementary 

materials. Essential catalytic residues in SHV-1 are: S70, K73, S130, E166, N170, K234, G236, and A237 

(40) and conserved catalytic residues in PDC-3 include S64, K67, Y150, N152, K315, T316, and G317. 

Highly conserved stretches of 3-9 hydrophobic residues, annotated as hydrophobic nodes, exists in 

class A β-lactamases and have been proven to be essential for protein stability (41). Residues 

defined as belonging to hydrophobic nodes within SHV-1 are listed in Supplementary Table S1.  

In SHV-1, the predominant ESBLs substitutions occur at L35, G238, and E240, R43, E64, D104, 

A146, G156, D179, R202, and R205 appear in ESBLs with lower frequency (42). Mutations at M69, S130, 

A187, T235, and R244 are known to induce inhibitor resistance in the enzyme (43). In PDC-3, 

substitutions primarily occur on the Ω-loop, enhancing its flexibility to accommodate the bulky 

side chains of antibiotics, while deletions are more common in the R2-loop (39). The predominant 

Ω-loop mutations isolated from clinics are found at positions V211, G214, E219, and Y221 (44). 

 



7 

 

Emergence of highly conserved dynamic couplings 

DyNoPy builds a pairwise model of conserved dynamic couplings detected by combining 

coevolution scores and information on functional motions into a score Jij (see Methods and Fig. 1). 

To this end a dynamics descriptor should be selected. When the descriptor is associated with 

functional conformational changes, it is expected that functionally relevant couplings will report 

higher scores. Dynamics descriptors can be selected from commonly used geometrical collective 

variables (CVs) for the analysis of MD trajectories (see Methods). As expected, the average J 

matrix score varies across the different CVs, with some of them showing no signal of dynamic 

coupling (Supplementary Fig. S4C). 

SHV-1 and PDC-3 exhibit distinct dynamics, requiring a different choice of the CV that best 

captures the functional dynamics. For SHV-1, the global first principal component (PC1) proved 

to be the most effective feature, identifying 571 residue pairs with a Jij value greater than 0. 

Conversely, PDC-3 requires selection of more localized features that can extract the Ω-loop 

dynamics from the overall protein motion. Among the dynamic descriptors, the partial first 

time-lagged component (TC1_partial) performed best for PDC-3, detecting 216 residue pairs with 

a Jij value greater than 0. Consequently, PC1 and TC1_partial were selected to build the J matrix 

for SHV-1 and PDC-3, respectively. The performance of all 12 CVs for each protein was assessed 

and listed in the Supplementary Table S2.  

The importance of dynamical information is evident when coevolution couplings (���) and 

conserved dynamic couplings (Jij) are compared: the number of non-zero couplings decrease from 

40% to <2% of total residue pairs in the protein (Fig. S4D) when information from the dynamics 

descriptor is added. Thus, the inclusion of protein dynamics in coevolution studies acts as an 

effective filter that rules out residue pairs that do not have significant correlations with functional 

motions. Moreover, when relying only on ���, all the residues in SHV-1 and PDC-3 are included 

within four identified communities (Supplementary Table S3), suggesting that coevolution scores 

(���) alone do not effectively discriminate residues relevant for protein functions. Furthermore, it 

would be hard to distinguish critical core residues for each community using only ���, as the 

eigenvector centrality (EVC) values for the residues do not show remarkable differences 

(Supplementary Figures S5A and S5B). This means that a detailed investigations of the top 
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residues is needed to determine which pairs should be picked up and further analysed. On the 

other hand, it is much easier to identify essential residues based on J scores calculated, as clear 

outliers with significantly higher EVC values could be seen for almost all communities 

(Supplementary Figures S5C and S5D) (25, 45). In conclusion, the lack of specificity in the 

statistically based coevolution analysis supports the choice of incorporating a score for the 

correlation between residue interactions and dynamic behaviours.  

 

DyNoPy reveals critical residues and predicts evolutionary pathways in SHV-1 

DyNoPy identified eight significant communities of strongly coupled residues within SHV-1 

(Supplementary Figure S4A) with all crucial catalytic residues and critical substitution sites 

previously mentioned participating in one of these communities with the exceptions of R43, R202, 

and S130. Residues previously known to have critical role in function or conferring ESBLs/IRBLs 

phenotype are either directly coupled to protein dynamics or act as a central hub. The hubs interact 

with residues with either a role in catalysis or structural stability through their membership of 

hydrophobic nodes (31). Furthermore, DyNoPy identified key positions (L162 and N136) within 

some communities that are known to undergo substitutions, conferring an ESBL phenotype in 

other class A β-lactamases. These substitutions have not yet emerged in the SHV family, providing 

insightful predictions about the potential future evolution of the enzyme. Detailed description of 

the other three communities is provided in the supplementary information (Figure S6).  

 

DyNoPy predicts mutation hotspots for SHV-1 

DyNoPy detects critical mutation sites (L162 and N136) that are known to extend the range of 

possible substrates in other class A β-lactamases, but have not yet emerged as variants in the SHV 

family . These sites have not been modified in SHV family because of their plausible central role 

within the communities as they are mediating couplings with key functional residues essential for 

catalytic activity and structural stability, indicating their critical role in protein function and the 

potential lower mutation rate. These findings provide insightful predictions about the potential 

future evolution of the enzyme, as well as plausible explanations for why these mutations have not 

yet appeared. 
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L162, positioned at the start of the Ω-loop and adjacent to the crucial catalytic residue E166, is 

assigned as the core residue for community 1 (Figure 3A). While it remains conserved in SHV 

family, variants of L162 are known in other class A β-lactamase that are known to expand the 

enzyme catalytic spectrum. Single amino acid substitution at L162 can intensify antibiotic 

resistance in BEL-1 (46), a class A ESBL clinical variant, exhibiting robust resistance to ticarcillin 

and ceftazidime (47). BEL-2 diverges from BEL-1 by single amino acid substitution (L162F) which 

alters the kinetic properties of the enzyme significantly and increases its affinity towards 

expanded-spectrum cephalosporins (48). The relationship between L162 and protein catalytic 

functions can be explained using DyNoPy model, as there are couplings with catalytic important 

residues M69, K73, E166, and K234. Moreover, the BEL case has confirmed that L162F mutation 

significantly destabilizes the overall protein structure, highlighting the crucial role of L162 in 

maintaining protein stability (46). DyNoPy accurately identifies the centrality of L162 by reporting 

its connections with 28 backbone residues, including nine hydrophobic node residues critical for 

protein stability. Among these, five hydrophobic residues are part of the α2 node: V75, L76, G78, 

V80, and L81, highlighting the contribution of L162 to the stability of the α2 helix (31).  

Just like L162, N136 undergoes advantageous mutations in other class A β-lactamases while 

remains highly conserved within the SHV family. It is the core residue for community 7 (Figure 

4B). This residue forms a hydrogen bond with E166, stabilizing the Ω-loop (49). N170 acts as an 

intermediary between N136 and E166. N170, an essential catalytic residue located on the Ω-loop, 

contributes to priming the water molecule for the deacylation of β-lactams with E166 (50) and is 

directly coupled with N136. Due to the essential contribution of N136 in facilitating E166 to maintain 

its proper orientation, it was previously thought to be intolerant to mutations as substitution 

of Asparagine to Alanine at this position would make the enzyme lose its function completely (51). 

However, N136D substitution has emerged as a new clinical variant very recently in PenL, a class A 

β-lactamase, by increasing its ability in hydrolysing ceftazidime (51), suggesting that this site has 

potential to mutate. This gain of function is mainly triggered by the increased flexibility of the 

Ω-loop (51). DyNoPy correctly detect a dynamical relationship between N136 and the Ω-loop 

(residues 164-179). Six residues present in the Ω-loop participate within this community, 

including R164 and D179. These two residues are critical as they are forming the ‘bottleneck’ of the 
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Ω-loop which is essential for the correct position of E166 (52). D179 is also a critical mutation site 

for SHV-1. Single amino acid substitutions like D179A, D179N, and D179G are enough for the 

extended spectrum phenotype (42).  

 

DyNoPy detects residue couplings essential for protein stability 

DyNoPy identifies residue couplings critical for protein functional motions, particularly associated 

with protein stability. These residue pairs exhibit strong relationships as they are not only directly 

coupled with each other, but also forms various indirect couplings via other residues. As a result, 

both residues are considered as core residues inside these communities. It is expected that 

disruption of these couplings through mutation could compromise collective motions essential for 

enzyme activity.  

As the secondary core residues in community 1 (Figure 3A) F72 is showing a strong coupling 

with the primary core residue L162 and also forms nine indirect couplings with L162, including via 

the catalytic K234. This network of direct and indirect relationships reveals the importance of F72 

and L162 coupling in maintaining protein functional motions. Interestingly, previous studies 

identified a small hydrophobic cavity formed by L162 and F72, together with L139, and L148, which is 

essential for the stability of the active site (46). Notably, DyNoPy successfully recovers the key 

residues of this local hydrophobic cavity (L162, F72, and L148).  

The strong interplay between V103 and S106, which are both residues on the α3-α4 loop, is 

seen in community 5 (Figure 3C). These residues not only interact with each other directly but are 

also indirectly coupled via 21 other residues. This community emphasizes the significance of 

hydrophobic nodes in SHV stability and dynamics. Within the analysed 48 residues, 27 are 

hydrophobic, out of which 15 residues act as nodes critical for enzyme stabilization. Hydrophobic 

nodes stabilize their own secondary structures and interconnect to stabilize the overall protein (53). 

V103 and S106 themselves are hydrophobic nodes, stabilizing α3 helix and α4 helix respectively, 

and are strongly coupled with each other. In CTX-M, another class A enzyme, N106S is a common 

substitution that results in improved thermodynamic stability and compensate for the loss in 

stability of the variants (54). Interestingly, this residue is already a Serine in SHV, but still implies 

its pivotal role in protein stability.  
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DyNoPy provides valid explanations for mutation sites 

During the evolution of β-lactamases, single mutations on specific sites that are distant from the 

functional sites have been observed to significantly alter protein catalytic functions. Additionally, 

single mutations on some surface exposed residues can dramatically increase protein stability. 

Understanding how these distant mutations impact function and stability becomes a major 

challenge in understanding protein evolutionary pathways. Communities extracted by DyNoPy 

show these residues linked with functional important residues, providing a rational for these 

mutation sites with unknown functions. 

Mutations of G156 are limited but they lead to ESBL phenotype in the SHV family (42). G156 

is the central residue for community 4 (Figure 3B), but it is distant from the active site, over 20� 

away from the catalytic serine S70. Clinical variant SHV-27, has extended resistance ability 

towards cefotaxime, ceftazidime, and aztreonam (55). It differs from SHV-1 by single amino acid 

substitution G156D, suggesting that it has directly evolved from SHV-1 (55). Limited research has 

been done on position G156, and the understanding of how it affects the enzyme catalytic 

properties given that it is far away from the active site is still unclear. Based on our results, we 

suggest that this residue is essential for the overall protein function because of its 11 coevolved 

dynamic couplings with protein dynamics, including A146, another ESBL substitution site. 

SHV-38, an ESBL that is capable of hydrolysing carbapenems, harbours a single A146V 

substitution compared to SHV-1 (56). Like G156, A146 is 15 � away from S70 but shows an ability 

in altering protein catalytic function. The A146-G156 residue pair shows a strong coevolutionary 

signal and strong correlation with protein overall dynamics, implying that there may 

compensatory mutations at these sites with potential to emerge in the SHV family in the future. 

These two residues are not connected to any catalytic residues but their coupling to functional 

dynamics can offer plausible explanation to ESBL activity of these two mutations. 

Unlike other substitution sites that are adjacent to the active site, R205 is situated more than 16 

� away from catalytic serine S70. Its side chain points outward from the protein, exposing to the 

solvent. The R205L substitution often co-occurs with other ESBL mutations and is thought to 

indirectly contribute to the ESBL phenotype by compensating for stability loss induced by other 

mutations (57). SHV-3 is an ESBL that exhibits significant resistance to cefotaxime and 



12 

 

ceftriaxone (58). Two substitutions in this enzyme, R205L and G238S, extend its resistance profile 

(58). Thus, it is promising to see that DyNoPy detected these two mutation sites together within 

community 6 (Figure 4A).  

Y105 and R266 are the core residues for community 6. Y105 is situated on the α3-α4 loop 

positioned at the left side of the binding pocket. It is an important catalytic residue that recognizes 

and binds to the thiazolidine ring of penicillins or β-lactamase inhibitors (59). There is very 

limited information on the role of R266, except that it may stabilize the Ω-loop in the SHV family 

similar to the analogous T266 in TEM (60). G238 is coupled with an essential catalytic residue Y105, 

which further links with other catalytic functional residues: S70 and A237, and R266, a residue that 

known to stabilize the Ω-loop. This indicates that mutations on G238 would result in an alteration 

on protein catalytic function, as well as an increased flexibility of the protein, which strongly 

aligns with previous finding. Its linked mutation site R205 does not showing direct coupling with 

any catalytic residues. Instead, it is directly coupled with R266, which we mentioned as an Ω-loop 

stabilizer. Thus, it is not surprising that R205 substitution alone is never observed in nature (61), as 

it would not give significant evolutionary advantage to the protein.  

 

Insights into unexplained functional sites of PDC-3  

Unlike the extensively studied SHV-1, the functional roles of individual amino acids in PDC-3 

remains largely unexplored. This gap in understanding serves as welcome challenge for 

interpreting the effects of mutations and the dynamic behaviour of PDC-3 from our results. 

Although several mutation hotspots, such as those on the Ω-loop (44), have been identified, very 

little is known about the specific contributions of individual amino acids to the functionality of 

PDC-3.  

In PDC-3, mutations have primarily been reported in the Ω-loop. They enhance its flexibility 

to accommodate the bulky side chains of antibiotics, while deletions are more common in the 

R2-loop (39). DyNoPy detected five communities in total (Figure S4B) with all the four 

predominant Ω-loop mutations appeared in these communities. Community 3, 4 and 5 are 

explained in the supplementary information (Figure S7). Furthermore, DyNoPy also detected 

several previously unexplored Ω-loop residues. 
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 G214, a known mutation site in PDC-3, is the core residue in community 1. Another two 

essential mutation sites: E219 and Y221 also participate in this community, directly coupled with 

G214 (Figure 5A). G214 also has direct couplings with four other Ω-loop residues: A195, A197, G212, 

and L216. Previous results have demonstrated that substitutions of Glycine to Alanine or Arginine 

at 214 significantly destabilizes the Ω-loop (32). The strong correlation between G214 and these 

Ω-loop residues emphasizes the significant contribution of G214 towards the stability of the Ω-loop, 

which corroborates with previous results (32). Moreover, substitutions such as G214A and G214R 

and mutations on E219 and Y221 do not affect R2 loop flexibility, resulting in the smaller active site 

volume among variants (32) because none of the residues from the R2 loop are detected in this 

community offering plausible explanation to previously unexplained phenomenon.   

G204 is the core residue of community 2, coupled with 73 other residues, most of which are 

distant from the catalytic site, suggesting plausible crucial role in overall protein stability like L162 

in SHV-1 (Figure 5B). G204, a newly emerged mutation site in the PDC family (62), is located on 

the short β-sheet β5a within the Ω-loop, near the hinge region between β8 and β9 just above the 

active site. The only known variant of G204 is PDC-466, which was derived from PDC-462 (A89V, 

Q120K, V211A, N320S), with an addition of G204D (62). Coupling of G204 to several catalytically 

important residues, including K67, K315, and T316 can suggest that mutations at this site can 

negatively impact catalytic power. This offers a plausible explanation of seeing fewer variants at 

this site and mutations at this site could have impact on hydrolysing capabilities of PDC variants. 

This should be confirmed by further experimental studies of variants of G204. Unlike G214, E219 and 

Y221 mutations which do not influence the dynamics of the R2 loop, substitutions on V211, a 

member of Ω-loop, has impact on dynamics of R2 loop because of its indirect couplings, through 

G204 to R2-loop residues (32). Two less critical substitution sites, H188 and V329, were also 

observed in community 2.  
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Conclusions 

DyNoPy combines information on residue-residue coevolution and protein dynamics captured 

from MD ensembles to detect conserved dynamic couplings. These couplings are model as a 

graph and network analysis facilitate the extraction of epistatic subnetworks and the assignment of 

roles to residues based on their important in the graph model. The choice of a relevant descriptor 

of protein dynamics has an impact on the ability to detect couplings that are involved in functional 

dynamics. Here we demonstrated how the choice of relevant global and local descriptors returns a 

higher number of effective couplings (greater than 0), and in turn leads to interpretable graph 

models and communities. In other systems, when multiple descriptors can be used to quantify 

functional conformational change, it is expected that they will differently modulate the effect of 

coevolution coupling. This will be reflected in a different structure of the associated graph models. 

This suggests the use of DyNoPy to generate comparative models in proteins with multiple 

functions associated to distinct dynamical changes.  

Mutations of L162 and N136 have not yet emerged in SHV-1, but they are detected by DyNoPy 

as core residues for communities. These residues are strongly coupled with other functional 

important residues, which play critical roles in protein stability and catalytic activity. The 

identification of these couplings shows high consistency with previous studies and highlights the 

importance of L162 and N136 in SHV-1 functional dynamics. Given their central role in these 

communities, mutations in L162 and N136 can significantly alter protein function, suggesting their 

potential for future evolutionary changes. However, their strong relationships with these critical 

functional residues also suggest that mutation at these sites would need to be balanced to maintain 

protein function, providing an explanation for why such mutations have not yet emerged in SHV-1 

(63). The ability of DyNoPy in detecting functionally important mutation sites was demonstrated 

via well-characterized mutation sites including R205 and G238 from SHV-1. Moreover, DyNoPy 

shows predictive ability on less-studied mutation sites as G156 and A146, by detecting critical 

residue couplings that coevolved with functional motions. 

Based on the knowledge we have gained from analysis of SHV-1 functional protein dynamics 

we suggest that in PDC-3, mutations at G204 because of its significant conserved dynamic 

couplings can lead to new ESBL/IRBL clinical variants. We suggest that DyNoPy can be used as a 
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predictive tool to identify potential functional residues within this enzyme and guide future 

mutagenesis studies.  

In summary, by integrating hidden evolutionary information with direct dynamic interactions, 

DyNoPy provides a powerful framework for identifying and analysing functional sites in proteins. 

The tool not only identifies key residues involved in local and global interactions, but also 

improves our ability to predict silent residues with previously unknown roles for future 

experimental testing. Our application of DyNoPy to broad-spectrum β-lactamases ESBLs and 

IRBLs demonstrates its potential to address key medical challenges such as antibiotic resistance 

by providing valid predictions on protein evolution.  
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Methodology 

DyNoPy generates a graph representation of the protein structure that captures the couplings 

between amino acid residues contributing to the functional dynamics of the protein. Residues are 

represented as graph nodes, and conserved dynamic couplings are recorded as edges. Edge 

weights quantify the strength of these couplings. The model is built on two assumptions: residue 

pairs should have i) coevolved and their ii) time-dependent interactions correlate with a functional 

conformational change.  

Therefore, edge weights (���) for residue � and � are calculated as: 

 

��� � ���� � �	��    ��� � � � � 1 (1) 

 

where  ��� is the scaled coevolution score and 	��is the degree of correlation with the selected 

functional conformational change. α and β are weights assigned to ��� and 	�� that have a sum 

of one. The relative weight of the scaled coevolution score (α) is set to 0.5 in this study. When 

either of the assumptions listed above is not met, ��� is set to zero. 

 

Scaled coevolution scores 

The occurrence of residue-residue coevolution can be estimated and quantified using probabilistic 

models of correlated mutations from deep multiple sequence alignments (MSA). DyNoPy 

supports generation of the MSA using the HH-Suite package (64) and calculation of scaled 

coevolution score (���) using CCMpred (65). First a pairwise residue coevolution matrix (C) is 

calculated, then these raw scores (���) are divided by the matrix mean (Equation 2). All scores (���) 

smaller than 1 are set to zero, and the remaining values are normalised by the maximum value 

(Equation 3): 

  

��� �  ������ (2) 
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��� � 	 0, ��� � 1�������

, ��� � 1� (3) 

 

 

Correlation with functional motions 

The contribution of a residue pair to a selected functional motion is estimated by how much the 

change in interaction energy between the two residues over time is correlated with a collective 

variable (CV) describing the functional motion: 

 

��� � ���������� , ����� (4) 

  

��� � � 0, ��� � 0.5���, ��� � 0.5� (5) 

 

 

where ������  is the pairwise non-bonded interaction energy (see details in Supplementary 

Information) and ���� is the time-dependent value of the CV. Examples of CV and a discussion 

on the choice of the most relevant CV is presented in the results section. Correlation values 

smaller than 0.5 are set to 0. 

 

Graph representation and analysis of conserved dynamic couplings 

All pairwise conserved dynamic couplings (Equation 1) are collected into a square matrix J. A 

graph is built from J, using python-igraph v0.11 library (66). Nodes represent residues, and edges 

are drawn between nodes with positive ���. Edge weights are set to ���. The relative importance of 

the residues in this model of protein dynamics is calculated as eigenvector centrality of the nodes 

(67). Residues involved in extensive correlated dynamics with other highly connected residues 

have higher eigenvector centrality (EVC) scores. Groups of residues contributing to important 

collective motions are detected by community analysis of the graph structure. The 

Girvan-Newman algorithm is used to extract the community structure (68).  

 

Adaptive Sampling Molecular Dynamics Simulations 
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MD simulation data was sourced from our previous studies (31, 32). To summarise, SHV-1 

structural coordinates (PDB ID: 3N4I) were obtained from the Protein Data Bank and modified to 

the wild type by introducing the E104D mutation. Similarly, the PDC-3 structure was derived 

from PDC-1 (PDB ID: 4HEF) by a T105A substitution. Both enzymes were protonated at pH 7.0 

using PropKa from the PlayMolecule platform (69). One disulfide bond between C77 and C123 was 

specified in SHV-1. Both structures were solvated with TIP3P water molecules in a periodic box 

with a box size of 10 Å. Ions were added to neutralize the overall charge of each system at 

150mM KCl. Amber force field ff14SB was used for all MD simulations (70). After an initial 

minimisation of 1000 steps, both the enzymes were equilibrated for 5 ns in the NPT ensemble at 1 

atmospheric pressure using the Berendsen barostat (71). The initial velocities for each simulation 

were sampled from the Boltzmann distribution at 300 K. Multiple Markov State Model 

(MSM)-based adaptively sampled simulations were performed for both proteins based on the 

ACEMD engine (72, 73). A canonical (NVT) ensemble with a Langevin thermostat (74) (damping 

coefficient of 0.1 ps−1) and a hydrogen mass repartitioning scheme were employed to achieve 

time steps of 4 fs. For SHV-1, each trajectory spanned 60 ns with a time step of 0.1 ns, with a total 

of 593 trajectories. In the case of PDC-3, 100 trajectories were collected, each containing 3000 

frames, lasting 300 ns. To manage the extensive datasets efficiently, trajectories were strategically 

stridden to ensure that a minimum of 30,000 frames were preserved for each system. The resulting 

trajectories are summarized in Supplementary Table S4. 

 

Calculation and Selection of Collective Variables 

Any vector that yields time-dependent information can be used as a collected variable (CV) to 

describe protein functional motions. The usefulness of DyNoPy is dependent on the choice of the 

CVs. To guide the selection of CVs, we selected 12 distinct features: radius of gyration (Rg), the 

first principal component (PC1), partial PC1 (PC1_partial), the first time-lagged independent 

component (TC1), partial TC1 (TC1_partial), global root mean square deviation (gRMSD), partial 

RMSD (pRMSD), dynamical RMSD (dRMSD), global solvent accessible surface area (gSASA), 

partial SASA (pSASA), active site pocket volume, and the number of hydrogen bonds (hbond). A 

description of the CVs, including the calculation methods and the residues used to calculate those 
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partial variables, is detailed in the supplementary information. CVs were subsequently used as 

input features for DyNoPy. The selection criteria for CVs were based on the number of residue 

pairs each CV could detect. 
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Data Availability 

All files required to run the simulations (topology, coordinates, input), processed trajectories (xtc), 

corresponding coordinates (pdb), can be downloaded from the DOI 

https://doi.org/10.57760/sciencedb.15876 (PDC-3) and 10.5281/zenodo.13693144 (SHV-1). 

DyNoPy is available at https://github.com/alepandini/DyNoPy.  
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Figure 1 – Overview of DyNoPy Workflow 

 

 

 

 

 

 

 



 

Figure 2 – Structural Comparison of SHV-1 (PDB ID: 3N4I) and PDC-3 (PDB ID: 

4HEF) β-Lactamases. Catalytic serine S70 (SHV-1) and S64 (PDC3) are highlighted 

using stick representation. Important loops surrounding the active site are highlighted 

in red. In SHV-1, highlighted loops are the α3-α4 loop (residues 101-111), the Ω-loop 

(residues 164-179), and the hinge region (residues 213-218). In PDC-3, highlighted 

loops are the Ω-loop (residues 183-226) and the R2-loop (residues 280-310). 

  



 

Figure 3 – Community 1, 4, and 5 of SHV-1 β-Lactamase. All the residues are depicted 

as spheres on the protein structure. The core residue for each community is highlighted 

in red, while purple is used to emphasize the secondary core residue. Residues that 

interact with both cores are coloured in light yellow. Functional important residues are 

marked in cyan. Hydrophobic nodes are enclosed with cyan boxes. A. Community 1 of 

SHV-1, comprising 33 residues with L162 being the primary core residue. B. 

Community 4 of SHV-1, containing 12 residues and is centred by G156. C. Community 

5 of SHV-1, embracing 48 residues and showing a strong correlation between V103 and 

S106.  



 

 

 

Figure 4 – Community 6 and 7 of SHV-1 β-Lactamase. All the residues are depicted as 

spheres on the protein structure. The core residue for each community is highlighted in 

red, while purple is used to emphasize the secondary core residue. Residues that interact 

with both cores are coloured in light yellow. Functional important residues are marked 

in cyan. A. Community 6 of SHV-1, comprising 30 residues with Y105 being the primary 

core residue. B. Community 7 of SHV-1, containing 34 residues and is centred by N136.  

  



 
Figure 5 - Community 1 and 2 of PDC-3 β-Lactamase. All the residues are depicted as 

spheres on the protein structure. The core residue for each community is highlighted in 

red. Functional important residues are marked in cyan. A. Community 1 of PDC-3, 

comprising 36 residues with G214 being the primary core residue. B. Community 2 of 

PDC-3, containing 74 residues and is centred by G204. 

 


