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Abstract

Novelty creation is one of the main features that define evolutionary biological systems that display Open-Ended
Evolution (OEE). Recently developed theories support the idea that Open-Ended Evolution (OEE) cannot appear in
absence of constant organisational closure over a characteristic timescale, and such closure is also considered to be
the actual cause of OEE. In this work, we use the assembly theory to study the effects of the emergence of auto-
catalytic networks on the dynamics of the complexity in the Kauffman model, and provide evidence of the causal
relation between organisational closure and the boost of complexity in the sense of Open-Ended Evolution. Our
results provide a first numerical support of experimental evidence of causal relation between functional closure and
OEE. We show that functional closure is not a only necessary condition to reach OEE, but also sufficient when the
model parameters allow an auto-catalytic network to emerge. In order to provide stronger evidence to this conjecture,
in the last part of this paper we study the effects on the complexity dynamics provoked by the simplest auto-catalytic
set in the Kauffman model in the case where the emergence of auto-catalysis is completely uncorrelated from the
model parameters. This work represents a promising area for initial study of the dynamical relation between OEE and
organisational closure, possibly pushing forward the understanding of their connection in theoretical biology.
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Amongst all the current open questions in mathemat-
ics and physics, modelling life and more in general bi-
ological evolution represents a very complex field that
has not yet found its mathematical framework. In a
first approach, one could argue that biological evolu-
tion does not satisfy any physical symmetry as we know
it. However, while physical invariances are a feature
typically belonging to inanimate objects, living systems
obey more complex invariances that live on a different
scale, for example on the collective organisation of in-
dividuals. From this perspective, life could escape the
classical paradigm of physical symmetries by posing its
laws on another level, higher than the individual and
possibly varying in an unbounded way.

Thus, the classical variables used in physics such as
time and space are not anymore a good choice for the
description of a living system, as for the living time be-
comes what we call history, which depends strongly on
the context. Therefore, space and time as we know them
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do not represent anymore a good set of variables in bi-
ology, and this is also justified by the fact that living
entities have the freedom of choice, thus they do not all
follow necessarily the same optimised physical trajecto-
ries.

In order to correctly describe biological evolution, it is
necessary to define symmetries that take in account his-
tory and context, which can be considered as two sides
of the same coin.

While recent works in artificial intelligence paved the
way to the definition of open-endedness in different se-
tups [} 12} 13} 141 5} 6], the achievements attained in this
field cannot be fully applied to open-ended evolution in
biology. This is because cells are not universal Tur-
ing machines, as A. Pocheville wrote in [[7]], “biolog-
ical sequence may be more complex than its algorith-
mic counterpart”. Also, a pioneering work on Artifi-
cial Intelligence by R. Penrose [8] shows how the al-
gorithmic intelligence cannot be comparable with the
non-computational human mind, in deep contrast with
works supporting strong-Al approches to for the algo-
rithmic interpretation of living systems [9].
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Historical monumental books such as Schrodinger’s
“”What is life?” [10] paved the way to a new modern
physics approach for the interpretation of livings sys-
tems that recent works [11] pushed even further in the
interpretation of life as anti-entropy. Other works seem
instead to prefer interpreting life as selection-derived
self-organisation during Darwinian evolution [12} [13]].
If life has not yet found its best form of mathemati-
cal language, several efforts have been made to provide
a formal description of biological evolution, as a tran-
sition between two configuration of living systems, in
terms of autonomy [[14]] and undecidability [[15]].
Different works on chemical systems were motivated
by the possibility of finding a formal framework for a
mathematical explanation of evolution, hoverer a part of
these shows that evolution theories motivating the emer-
gence of novelties from simple chemical reactions such
as metabolism-first or replicator-first do not display true
evolvability in the Darwinian sense [16]. Thus, novelty
must be more than a simple discovery of new chemical
species.

On the other hand, however, if we assume that the ba-
sic processes that created life rely on chemical reactions
systems, then if an evolving system increases its com-
plexity over time this implies the presence of a partic-
ular type of selection such as the stabilising selection,
disruptive selection or directional selection that plays
the causal role, or ’the motor” [[17, (18} [11] of increasing
complexity.

Therefore, natural selection should suffice for evolution
to emerge in a living system, and evolution must al-
ways emerge in presence of natural selection. Following
this latter intuition, selection would be the only physical
symmetry that causes evolution in evolutionary biolog-
ical systems.

If modelling the basic characteristics of living systems
is still a very complex task, a relevant progress was pro-
vided with the Kauffman model of auto-catalysis. [19].
Further developments of interpretation of life as a pro-
cess fueled by auto-catalysis have been made by the
same author [13] [12], pushing forward the analogy be-
tween the boost of complexity of an auto-catalytic cycle
in a chemical reactions system and the boost of com-
plexity produced by what we interpret as organisational
closure in a living system.

In this work, by pushing forward the analogy between
auto-catalysis and organisational closure, we provide
evidence of causal relation between the emergence of
functional organisations in biological systems and open-
ended evolution in the framework defined by the Kauff-
man model [19]].

1. Motivations

As already pointed out by other authors [[20, 18} [11]], un-
derstanding the maths of living systems requires a dras-
tic change of paradigm. If current mathematical tools do
not seem to be accurate enough to predict the dynamics
of biological organisms, biological evolution seems to
be posing a fatherly challenging problem.

In other words, the objective of finding mathematical
tools to describe evolution could be expressed as the fol-
lowing statement: “to say everything we can say about
what we can’t talk about”.

In this article, we make use of some principles of theo-
retical biology to show evidence of new physical sym-
metries emerging in biological evolution.

1.1. Closure

As widely described in literature[18]], the study of the
thermodynamic flow in a biological system highlights
some particular quantities that are conserved in spe-
cific timescales of the system (symmetries) named con-
straints [18} 21]].

At different timescales, constraints are subject to degra-
dation and have to be either replaced or repaired. This
situation can be interpreted depending on the scale the
constraint is being studied: for example while individ-
ual enzymes are replaced, their population is said to be
repaired [21} 22].

In a biological organisation, the constraints represent a
physical symmetry valid in a particular timescale which
can also depend on other constraints. A set of con-
straints C is said to realise Closure if and only if [18]
each C; € C depends directly on another constraint
Cj € C, i # j at timescale 7; (C; is dependent), and
there is at least another constraint C;, € C, i # k which
depends on C; at timescale 74 (C; is enabling).

While mathematically the concept of closure might
seem pretty basic, from a biological and philosophical
point of view it has relevant consequences [23]] such as
the autonomy of a living system, and at the same time
its capacity to self-maintain and self-produce, thus es-
tablishing goals and norms while promoting the funda-
mental conditions for their existence through the inter-
actions with the environment [ 22} [18] 21]].

A simple model representing a simple example of emer-
gence of organisational closure is the Kauffman model,
in which the emergence of reflexively auto-catalytic sets
of peptides and polypeptides can be associated to a par-
ticular realisation of closure [[19]].

1.2. Principle of Variation
Understanding biological evolution from a mathemati-
cal perspective requires to perform a change on the vi-



sion of the physical world. In particular, what is mostly
required is a change of the conceptual modelling of the
objects to describe.

The main subjects of physical theories are generic ob-
jects [20]], that are physical entities of the same kind
that obey the same laws. The generic objects are de-
fined by symmetries that justify the underlying mathe-
matical structure provided by the phase space and the
equations that determine the trajectories. Such symme-
tries are time-invariant and do not change if the generic
object suddenly changes, meaning that they capture the
most essential features of an invariant.

On the other hand, biology is said to deal with objects
that are called specific objects [21]], which are defined
not only by the symmetries that define the generic ob-
jects, but also by their qualitative features that are a con-
sequence of their histories. Thus, the mathematical de-
scription of specific objects must rely not only on their
symmetries, but also on their adaptation, corresponding
to the evolution of such symmetries over time.
According to the Principle of Variation [21]] that states
that biological organisms are specific objects, it follows
that biological systems undergo unpredictable symme-
try changes over time. As biological organisms are spe-
cific objects, their evolution depends not only by their
symmetries, but also on the context in which they live
and the set of choices made, which constitutes their his-
tory. As each context and history is different for differ-
ent specific objects, their mathematical structure must
change unpredictably over time. If each specific object
can undergo an unpredictable change, it follows that the
way symmetries change in a system made of specific
objects is order-free, and the change can happen unpre-
dictably at any level of the organisation of the biological
system.

Systems that follow the Principle of Variation during
their evolution require their reproduction to be sustained
in an open-ended manner, thus the underlying process
that leads all their evolution is called Open Endedness,
or Open-Ended Evolution (OEE) 21} 24].

1.3. Open Endedness and Complexity

A recent work by Corominas-Murtra [25] seems to open
a venue for a minimal description of OEE.

Following briefly their work, if we consider the descrip-
tive state o, of a generic system at time #, we can define
the set X; = {o};_, which tracks the “history” of the sys-
tem at different discrete time steps# =0, 1, ..., t. They
define K(%,) the Kolmogorov complexity of the history
of the system.

Corominas-Murtra [25]] proposed three axioms for the
formalisation of OEE, but we will focus particularly on

the first, which states that the complexity K(Z,) of an
open-ended system does not decrease when divided by

time:
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While the increase of complexity alone corresponds to
the coming of a novelty in the system, this axiom thresh-
olds the growth of the complexity of an open-ended sys-
tem at least as the complexity of a random chain.

In the case of continuous time it can also be re-written

as
d K(X(1)
=20 1eT 2)

where I' is a dense time interval.

In other words, if this condition is satisfied then a
non-trivial novelty can occur at any time and the system
experiences OEE. The non-triviality of the novelty
consists in being a functional novelty that changes the
organisation of the biological system, this it does not
only correspond to the discover of a new living entity.
Furthermore, the novelty can also be considered as a
change of the organisation of the constraints of the
living system. For example, in a system of chemical
reactions the discovery of a new molecule is a novelty
in the sense of chemical diversity, but it does not
necessarily add a new functionality in the system.
Thus, the newly discovered molecule might slightly
increase the complexity, but not more than a simple
random chain. In order for the molecule to increase the
complexity in the sense of Corominas-Murtra [25]’s
first axiom, it shall induce new functional changes,
such as the emergence of a new auto-catalytic cycle in
the Kauffman model.

The axioms provided by [25] represent an important
contribution to the study of OEE, however due to the
incalculability of the Kolmogorov complexity, it cannot
be applied straightforwardly.

If this problem could represent a crucial blocking point
in physics, in biology this is not always the case because
biological dynamics does not involve generic objects,
but specific objects. Exactly because of the nature
of specific objects, it follows that the Kolmogorov
Complexity might not always be a really appropriate
measure of the complexity of biological systems.

2. A Measure of Complexity: Assembly

Recent developments [26,27] pushed forward the math-
ematical formalisation of specific objects, providing a
new inferring technique to measure the amount of se-
lection via a quantity named “Assembly”.



The calculation of this quantity depends on two main
parameters, called respectively assembly index a;, corre-
sponding to the number of synthesising steps performed
by the system to synthesise the molecule, and the copy
number n; which corresponds to the number of copies
of a unique molecule, where the term unique assumes
a special connotation because it corresponds to the con-
cept of specific object as defined in [21]]. In this sense,
two molecules having the same structure can also be
represented by two different specific objects because of
their histories.

The Assembly A is then calculated [27] as follows:

A=y () G

Where the sum is performed over all the unique
molecules i and N7 is the total number of molecules in
the system.

The authors claim that higher values of such quantity for
two different realisations of a chemical system indicate
the presence of a higher degree of selection[27].

We think that this quantity can also be interpreted as the
measure of the the amount of “efforts” made to build
the system up to a certain configuration. Equivalently
to the calculation of the partition function Z in statisti-
cal physics, this quantity can also be interpreted as the
energy necessary to bring the system to a specific con-
figuration.

Therefore, in this article we will use the assembly not
only as a measure of selection in our system, but also
as a measure of the complexity. The calculation of
the assembly neglects casual discoveries of new entities
(n; ~ 1) which do not contribute much to the complex-
ity. It follows that only novelties meant as new func-
tional organisations in the system provide an important
contribution to the complexity of the system, as the en-
tities that belong to the new organisation are stably pro-
duced in non-negligible quantities.

3. Our Hypothesis

In this article, we want to provide evidence that not only
functional closure and OEE are strongly correlated, but
that closure is the epistemological cause of OEE.

As well pointed out by [28]], while physics does not have
yet the tools to explicitly provide a causal explanation
of physical phenomena, we could see a breakage of the
formal symmetry as being correlated to a efficient cause,
causing the change of the state of the system while leav-
ing its properties invariant.

For instance, let’s consider the electromagnetic force

F = qﬁ + gV A B. Considering only the electrostatic
contribute qﬁ , we could state that E is the cause of the
Coulomb force acting on the charge g. The same holds
for the magneto-static component gv A B, for which we
could say that B is the cause of the Lorenz force acting
on the moving charge q.

In biology, the formal symmetry breaking between the
objective situation where “="" indicates simple correla-
tion and where it indicates a causal epistemic regime is
a more relevant event than it is in physics [28].

In order to tackle this open problem, we first adopt the
hypothesis that OEE implies a non-decreasing historical
complexity in the sense of Eq.(T) [25].

In a system of chemical reactions, the novelty does not
correspond to the discovery of a simple new chemi-
cal species, but rather to the new organisation of the
constraints of the system that provides a new and un-
predictable functional role. Mathematically, this corre-
sponds to saying that while the production of any possi-
ble molecule can be predicted at the origin of time, what
cannot be predicted is the effects that a new organisation
of constraints has on the system.

We consider the Assembly as a good measure of the
complexity of the system described by the Kauffman
model.

With this formal paradigm in mind, we make use of
Kauffman’s model [19] as toy model to for the mod-
elling of closure as an auto-catalytic set of chemical re-
actions. By using this framework, we provide numerical
evidence that the emergence of auto-catalysis causes the
increase of complexity in the system in the sense of [25]],
following the theoretical intuition proposed by [29].
We consider closure and OEE as two faces of the same
symmetry in biological evolution, as this holds for the
electric and magnetic field in the electromagnetism.

As closure is a very special type of organisation of bio-
logical constraints, it should appear only if the system is
subject to strong selection [18][22]. On the other hand,
OEE requires not only the system to be biologically sta-
ble through different generations, but also the system to
be capable at any time of adapting and thus generating
new functional organisations [18] [22] 30].

4. Numerical Study

We study the evolution of the Kauffman model as it is
described [19, 29, 31]] in a framework based on the As-
sembly Theory. In this model, any molecule can either
ligate to another (“ligation™) or split and produce two
molecules (“cleavage”). Any reaction can be catalysed
with probability p., by any chemical species that do not



belong to the substrate. Catalysis is modelled as a reac-
tion whose speed is k-times the speed of spontaneous
reactions. Under some specific conditions, the dynam-
ics gives rise to Auto-Catalytic sets (RAF) [19].

In this work, we refer to “RAF” the maxRAF detected
in the system. For the same reason, we refer to the “size
of RAF” as the size of the maxRAF present in the sys-
tem, which corresponds to the joint size of all the in-
dependent RAF. A further study could differentiate the
topological structure of the RAF, highlighting eventual
uncovered dependencies of the assembly on topological
properties.

We interpret the auto-catalytic networks not only as a
functional novelty, but also as the representation of se-
lection in the system itself. The molecules belonging to
the auto-catalytic network not only follow a privileged
dynamics, but they also are selected in the sense that
their privileged production is crucial to the survival of
the emerging functional organisation they belong to.
We measure the complexity of a realisation of a chem-
ical system in Kauffman model via the Assembly The-
ory, and we focus our study on the effects of the emer-
gence of auto-catalytic networks on the assembly.

4.1. The algorithm

We utilise the Gillespie algorithm to run the numerical
simulations as in [31].

We consider a chemical reaction system (CRS) defined
as in [31]] by the tuple CRS = (X, R, C), where

e X is the binary molecules set, in which the most
simple molecular subset corresponds to {0, 1};

e R is the set of reactions involving the molecules
in X that are of the type “ligation” when two
molecules react to synthesise a new one, or “cleav-
age” when a molecules splits into two molecules
of lower length.

Each reaction is exhaustively described by the tu-

ple (v, x°, lig, (X}, x{e, xPrody) for ligation

reactions, and (v, x°“, cleav, (x? rody, 1 rod - yreacty
for cleavage reactions, where v is the reaction
speed and x“ € X the set of catalysts of the re-
action;

cat

o C = {6,~‘,'(xf“’,rj)}l].t]j’.g) is the set catalytic assign-
ments, where §;; is a delta set-selecting function
that equals to one if the molecule x{* € X cataly-
ses the reaction r; and to zero otherwise, N is the
total number of molecules in the system, M the to-
tal number of reactions, and xf‘” €X, rieR. Cis
then a subset of the product set X X R.

It is important to note that the delta function ¢;; not
only associates the catalyst to the reactions, but it also
contains information about the topology of the model.
The systems always disposes of an inexhaustible subset
of molecules ¥ named “substrate”, which corresponds
to the ensemble of all the possible binary molecules
with length up to F = maxg l(x]x € F), where
[ : x > R* is the measure of the length of a molecule x.
An incoming stream of molecules allows each chemical
species belonging to the substrate to never decrease
under the initial quantity Q.

Only the molecules x; € X with length up to
N > L = maxylIl(xlx € X), F < L, are allowed to
exist in the system.

The speed of catalytic reactions is set to be k-times the
value of the spontaneous reaction speed vo: Vo = kvy.
The choice of K and the initial amount of substrate F
plays a role on the speed of the simulations, but as we
will see later, the conceptual results of our study are
independent on them.

For our simulations, we set the maximum molecular
length L = 8 and the maximum substrate length F' = 2
which corresponds to ¥ = {0, 1,00,01, 10, 11}. With
this choice of F and L, the emergence of RAF is
independent on these two parameters [19].

The initial configuration of the system at time t = 0
is solely provided by the molecules belonging to the
substrate set 7, and the reaction dynamics is simulated
using Gillespie’s algorithm[32]]. The molecules belong-
ing to the substrate ¥ do not catalyse any reaction.
Every time a new chemical species is discovered during
the evolution of the system, it catalyses an existing
reactions with probability p.,. The value of p., plays
a crucial role on the time required to observe the
emergence of a RAF set. [[19,|31]]

4.2. The molecules in the system

Our numerical simulations use reflecting boundary con-
ditions, i.e. molecules with maximum length L can only
react via cleavage reactions and cannot ligate to others.
Equivalently, all the ligation reactions that would pro-
duce a molecule longer than L generate a molecule that
is highly unstable. We consider these molecules to not
be observable in the system, thus for simplicity in the
numerical simulations these reactions are not allowed.
Furthermore, we assume the absence structural sym-
metries among molecules, i.e. molecules represented
by different binary sequences correspond to different
chemical types.



4.3. RAF detection

In order to detect the RAF emerging in Kauffman’s
model, we adopted the algorithm for the autocatalytic
sets generated by a food source (RAF) described by
Hordijk et al. in [33] and we implemented it in Python
3.8.

4.3.1. Assembly index

When calculating the assembly of the system, before
running the simulations, we pre-defined the assembly
indexes a; of each chemical species via Monte-Carlo
simulations including all the possible relations ] and [3]
for a network of reactions with parameters (F, L).

In particular, the iterative algorithm to determine a; for
ligation reactions is

mi+my - M, a(M)=a(m)+a(m)+1 (4)

and for cleavage

M —my+my, ai(m), ai(my) =a;(M)+1 (5)

By definition, the assembly index is null for all the
molecules belonging to the substrate . The assem-
bly index is always a positive quantity because the
molecules of # do not do cleavage reactions.

In our simulations, we decided to associate the assem-
bly index to a chemical species using what we call “the
minimal path history of chemical species™: if different
assembly indexes are calculated for molecules belong-
ing to the same species, we chose to take the minimum
value which corresponds to the shorter assembly path
possible in the system [34]. This decision comes
from the intent of simplifying the model for numerical
purposes, as the distribution of synthesising paths of a
molecular species is very narrow.

There are two more possible ways to calculate the
assembly index.

A first alternative approach that we call “the history of
the chemical species” is to evaluate the the assembly
index of each molecule on-the-run, and associate
the minimum value to the chemical species whether
different assembly paths exist for molecules with the
same structure.

A second way that we call “the history of the molecules”
is to associate to a molecule the index corresponding
directly to its assembly path in a numerical simulation.
For very large systems and very long simulated times,
both these alternative approaches are equivalent to the
aforementioned utilised in our simulations, however the
latter two introduce a stronger historicity in the system
that for different types of studies might unveil some
more features of evolving biological systems.

4.4. Assembly index in the simulations

It can be easily shown by induction that a good approx-
imation for the minimum value of the assembly index
Amax for uni-dimensional binary molecules in this con-
text is provided by

L/2-1, if L even
amux = . (6)
(L-1)/2, if Lodd

The numerosity ((a;) corresponding to the number of
chemical species with the same assembly index a; can
be calculated by using Eq.(6]) for any value of the molec-
ular length. For example, for even values of the molec-
ular length we get In Q(a;) = 2a;1n2 + D, where D € R
is a constant that changes depending on L.

InQ2
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Figure 1: Logarithm of the numerosity of molecular species Q en-
countered in the numerical simulations as a function of their assembly
index a;. Black dots: simulations for N = 7 and F = 2, red dots for
N = 8 and F = 2 and blue dots for N = 9 and F = 2. Dashed black
line: InQ = 24;1n2 + In 6. Inset: assembly index «; as a function of
the molecular length L for different molecular species encountered in
the numerical simulations. The two dashed red lines correspond to the
two approximations of Eq.(6).

In our simulations, we found a very good agreement
for all these quantities, showing that the approximation
holds very well. These results are also good evidence of
the interpretation of the assembly as historical complex-
ity for a system of chemical reaction of uni-dimensional
binary molecules.

5. Results for the classical Kauffman’s model

We consider a network of chemical reactions in which
the catalysts x{“' € X are assigned to the reactions r; € R

i



with constant probability P(r, cat) :

P(r9 CClt) = pcat’ pcat € [0’ 1] (7)

The original formulation of this model was done to ease
auto-catalysis-emergence, as can be shown by doing
some basic calculations. Indeed, as the probability of
associating a catalyst to a reaction r; is a constant p., it
follows that the probability that the set of catalysts X
of a reaction r is not empty is

P(X“|>0[r)=1-P(X“|=0[r) =1~ pea)”
®)

As N increases in time, for t — oo we find
P(X““>0|r)—>1-¢ )

where 1 > ¢ € R* is a constant that decreases as p.,
increases.

Then, for any value of p., > 0, for very long simula-
tion times it is unlikely for a reaction to not find any
catalyst in a infinite time interval and unbounded sys-
tem. However, this is not always true for finite-sized
systems and for finite time numerical simulations. As
shown by [31}[12], in order to see emergence of a RAF,
a threshold applies on the catalytic fraction of reactions
for a given system size.

In our work, when p.,; > 0 we will mainly focus on the
range of values lower or at most equal to such threshold.
As we will see in the next sections, the correlation be-
tween the emergence of organisational closure and the
boost of the assembly are both correlated to p.,. This
correlation can be weakened by working in a range of
very low values of p.4.

5.1. Time evolution of the assembly

In order to have a first insight of the time behaviour of
the assembly, we ran some numerical simulations and
measured the assembly as a function of time for differ-
ent realisations of the system for the same value of p..,
as in Fig2] The data show that the temporal dynamics
of the assembly is strongly correlated with the type of
RAF in the system. In particular, not only the assem-
bly is higher in presence of auto-catalysis, but its time
derivative is strongly correlated with the time-derivative
of the size of the RAF. In other words, in our simulations
the dynamics of the assembly depends on the dynamics
of the auto-catalytic cycles. This always happens in the
Kauffman model when the value of p.,, is high enough
to allow the emergence of a RAF.

For this reason, we firstly make use the first OEE ax-
iom provided by [25] to explore deeper the correla-
tion between the emergence of a RAF and the boost of
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Figure 2: Numerical results of temporal dynamics of the Assembly for
different runs of the system with p.,; = 0.01, Q& = 10 and k = 10*
and different RAF sizes at the end of the simulated time: absence of
auto-catalysis (black), unitary RAF (red), RAF with final size 3 at the
end of the run (blue), final size 10 (yellow), final size 21 (green) and
final size 50 (maroon).

the assembly. In Fig[3] we report a strong example in
which this axiom is verified, as the time-derivative of
A/t starts to increase right after the emergence of the
RAF, whereas this does not happen when compared to
the case without RAF. As we already mentioned it, the

T,

Figure 3: Assembly/time with emergence of auto-catalytic networks
(red) and the corresponding curve of the RAF size (blue dots), assem-
bly in absence of RAF (maroon), both the simulations were run for
Pear = 0.002, Q7 = 10 and k = 10*. Dashed brown line: 1/z. Inset:
same data in which the assembly A is not normalised by the time ¢.

dynamics of the assembly is strongly correlated with
Pear, for this reason one could be tempted to think that



this happens only because of the presence of a non-null
value of p... Thus, we first measure the correlation be-
tween the assembly and the size of the RAF for different
values of p., to further study this correlation, then in
the next sections we explore the dynamics of the model
in the uncorrelated region where the value of p,, is too
low to produce any RAF, i.e. p.,s < 1.

5.2. Assembly and RAF

In order to explore the correlation between the assembly
and the RAF size, we study the correlation for different
values of p.,. The results are reported in Fig@
As the correlation is obvious at this stage, the presence
of a non-null p., is enough to not let us assert that
the presence of auto-catalysis is the direct cause of the
increase of the system’s assembly. As well explained in
[31]], the parameter p.4 is strongly correlated not only
to a threshold of probability of emergence of RAF, but
also to the their growth speed. This means, the higher
the value of p., and the higher is the probability that
a RAF emerges, as well as the speed at which it grows
after their emergence.

For this reasons, in the next sections we study the
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Figure 4: Assembly for n = 10 runs as a function of the size of the
RAF for Q7 = 10, k = 10* and for different values of Pegr: Pear =
0.003 (black), Peer = 0.005 (turquoise), Peqr = 0.01 (red) and Py =
0.05 (maroon).

model in the limit p.,; < 1 in which dynamics of the
assembly is uncorrelated from p.,. The question we
want to answer in the next part of this article is “can the
smallest RAF create an Open-Ended dynamics in the
Kauffman model?”.

6. Imposing a unitary RAF

In order to better understand the causal relation between
the emergence of RAF and the boost of complexity of
the Kauffman model, we study the effect of a minimal-
size RAF on the dynamics of the Assembly.

To do so, we study the dynamics of the model in the
limit p., — 0, and we analyse the effects on the nu-
merical simulations of imposing a RAF of unitary size
(URAF) with respect to the presence of a simple cat-
alytic reaction (CR). In the simulation, the URAF and
the CR are activated when their catalyst is introduced in
the system at time #y). The catalyst plays the role of a
”seed” of complexity growth. If closure is the cause of
the boost of the assembly, then we expect a URAF to
change the dynamics in a very different way compared
to a simple CR.

We compare the difference of the growth of complexity
in two different types of systems with URAF and with
CR using the first axiom by [25].

6.1. Effects of the introduction of a URAF

When in the presence of a URAF, the time behaviour of
the assembly is pretty simple to understand.
Let’s call Ay the assembly contribute of the catalyst C,
called also the seed of the system. One could express
the total assembly of the system as the sum of several
contributions:

A=A+Ag (10)

where

A = A(F) + AM) + 4, (11)

where A(F) is the assembly of the substrate (i.e., the
molecules with assembly index equal to zero), A(M) the
contribution of the molecules M that have C as common
ancestor in the chain of reactions, and A; the contribu-
tion of all the other molecules.

The contribution of the molecules in A(¥) is negligible
over time, as their assembly index is null. The amount
of substrate  can be considered almost constant over
time, so that A(¥)/t — 0.

The contribution A; is negligible as well, as the
molecules the contribute to this part of assembly are
synthesised by spontaneous processes.

Thus, we can make the following approximation:

A~ AM)+ Ao 12)

Using a biology metaphor, we could say that with this
re-definition we assume the assembly to be determined
by two main contributes: the seed-contribute Ay and all
the parts of the system that grow around the seed, A(M).



While the seed-contribute plays the part of the fuel of
the system for a long time range, in the very long term
its impact on the system will start to vanish, letting the
dynamics of the contribute A(M) take over in the dy-
namics. When the derivative of the dominant contribute
A(M)/t is non-negative, we interpret it as a signature of
OEE. In our case, the cause of OEE is the introduction
of a URAF in the system.

6.1.1. Effects of the introduction of a URAF

We developed an algorithm that introduces an auto-
catalytic network of a given size Lgar during a numer-
ical realisation of the Kauffman model’s dynamics for
Pear = 0.0, with the objective of studying the impact of
such imposition on the assembly dynamics.
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Figure 5: Time evolution of the assembly with a URAF compared to
the assembly when in presence of a CR, for p.; = 0.0, Q& = 10,
k = 10* and URAF introduced at 7y = 0.0.

Blue: Total Assembly with URAF over time A(URAF)/t.

Maroon: Total Assembly with CR over time A(CR)/t.

Red: Assembly of the URAF Ag over time, Ap/?.

Green: (A — Ap)/t Assembly of the system without the URAF, corre-
sponding to the effects of the RAF on the creativity of the rest of the
system.

Curves averaged over n = 50 realisations.

We expect the imposition of a URAF to boost the as-
sembly of the system, making it attain a higher level of
complexity in the dynamics compared to a simple cat-
alytic set CR. We consider a chemical reaction of the
type

A+B—-C (13)
in which the couple A, B € ¥ and C ¢ ¥. For the
URATF case, we consider the reaction catalysed by C,
whereas for a CR it is catalysed by another molecule

D ¢ ¥, to avoid constant catalysis due to the permanent
presence of the substrate.

In order to provide also some analytical considerations,
for the case of the imposition of a URAF we study the
time evolution of two different types assembly: the to-
tal assembly of the system A(?) and the complementary
assembly A(f), defined as the assembly of the system
without the catalyst.

For both the cases of the imposition of a URAF or a CR,
we compare the same type of reaction: a ligation-type
reaction whose reactants are two different molecules
that belong to the substrate . In Fig.(5) we report the
temporal behaviour of the total assembly of the system
for the case of URAF and a simple CR, together with the
time evolution of A(f) after the introduction of a URAF.
Numerical simulations show not only that the assem-
bly of the system with a URAF is always higher than
the one with a simple CR, but also that the URAF in-
duces a new dynamics in the model compared to the
case without auto-catalysis. In particular, as we will see
later in this article, the introduction of a URAF propa-
gates a wave of complexity that lets the system discover
more complex molecules in the long run. Moreover, the
URAF plays the role of the fuel for the other chemical
reactions, boosting the system to discover more chemi-
cal species. The propagation of this effects stops when
when the number the molecules belonging to A — Ay is
not anymore negligible compared to the quantity of C.

6.1.2. Integration of kinematic equations

In order to fully understand the dynamics of the Kauff-
man model from a perspective of assembly theory, we
also studied the kinematic equations for a URAF in-
serted at tg = 0.0

The types of molecules present in the system divide
in four principal categories: the molecules belonging
to the food Np, the molecule generated by the auto-
catalytic nucleus N¢, the molecules generated using re-
actions that involve the catalyst of the nucleus C that
we call Ny, and finally all the other molecules that
are generated by reactions that involve molecules of the
food, that do not belong to the ensemble of MC, that we
call NV, MF-

In equations, Ny = Ng + N¢ + Nyc + Nyr. Let’s con-
sider the kinematic equations of the chemical reactions
involving all these molecules. The auto-catalytic re-
action that produces the molecule C can be written as

A+ B £> C, where A # B, and both belong to the food
set (A, B belong to a subset of food that corresponds to
a fraction 1/6 of the total initial molecules). Defining
the quantity Q as the initial quantity for each molecule



type in the food set, v the non-catalytic reaction speed,
k the ration between the catalytic and the non-catalytic
speed, and denoting with n the numerical density of a
molecule in the system:

Ny = 60
fe JIrr (1 + knc) + (nyc + nyr)—
v 36
ne(l +ng + ne + nyc + nyr)
. (14)
nMTC = (nyrnr + nyriyr) + nc(np + ne+

nyc + nyr) — anyc + Bayr

=, = o"FnF ~ ur + @nyc — pnur

where 0 < a < 1 corresponds to the fraction of reactions
that from the set MC create a molecules that belongs to
MF, and 0 < B < 1 to the fraction of reactions from
MF to MC These two coefficients represent the com-
mon molecules between M F and MC.
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Figure 6: Numerical simulations of the differential equations of kine-
matics for the total Assembly A of the system and the Assembly of the
URAF Ay, for py; = 0.0, Q5 = 10, k = 10* and URAF introduced at
to = 0.0.

Red: Total Assembly over time A/z.

Blue: Assembly of the URAF Aq over time, Ag/1.

Green: (A — Ap)/t Assembly of the system without the URAF, corre-
sponding to the effects of the RAF on the creativity of the rest of the
system.

Curves averaged over n = 50 realisations.

Following these equations, nyr becomes relevant for

10

long times and in particular we find nyr ~ anyc).

A good estimate of the parameters @ and 3 allows to
better predict the time behaviour of the molecules of the
type MC.

Fig.(6) are reported the results of the numerical integra-
tion of such equations that show a good compatibility
with the behaviours shown in Fig.(5). In particular, the
kinetics equations allow to better appreciate the pres-
ence of a time-asymptotic plateau for (A — Ap)/t, show-
ing that the presence of a URAF in the system boosts its
creativity, and pushing its evolution to a non-negative
time-derivative. The differences between the time be-
haviour of (A — Ag)/t in the kinematical simulations and
the Gillespie simulations are due to a non-perfect esti-
mate of the parameters « and (.

Finally, we want to point out that one might con-
sider controversial the finding of OEE in this setup of
kinematic equations, because as we said in the begin-
ning of this article an Open-Ended evolving system is
not supposed to be described by a finite number of
equations[21]. We will come back on this point in the
conclusions of the article.

6.1.3. The characteristic time T

By defining 7 as the value of ¢ at which the time-
derivative of A/t is not anymore negative and the second
time-derivative changes sign (see Fig.(5)), we can define
two main regimes for the total assembly A: for t < 7 we
find A ~ Ay, whereas for ¢ > 7 we have A ~ A. We
explain this behaviour with the kinetics equations. For
t < 7, the dynamics of the number of the seeds obeys the
approximate differential equation 71, ~ kvnangnc where
we identify with n the density of a molecules in the sys-
tem.

By solving the differential equation, we find that the
number of seeds in the system follows an exponential
growth of the type N, ~ exp(kvQ«#t) = exp(t/7), which
slows down when the number of seed saturates the sys-
tem for finite-size effects around r ~ 7, and is fol-
lowed by a cascade of reactions involving more complex
molecules. In the second phase, for ¢ > 7 the growth
rate of the seeds is almost constant, bringing N, to grow
linearly, n. ~ kvQst. In this regime, due to the com-
petition between the presence of C and that of its de-
scendants, the main contribution in the total assembly A
is provided by the molecules M. This is equivalent to
stating that the dynamics presents a complexity wave of
molecular length boosted by the initial URAF.
Considering Ag ~ en, = eN./Nr and approximating
the solution of the differential equation of n. in Eq(T4),
all these considerations on the reaction dynamics of the
seed translate to:
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Figure 7: Measurements of 7 in the realisation of the Kauffman model
for different values of the initial amount of each food species Q# and
k. The results show a good agreement with 7 ~ 1/Q. Inset bottom
left: dependency of 7 on the max length parameter N. The value of 7
converges for increasing values of N. Inset top right: dependency of
7 on k. The results show a good agreement with 7 ~ 1/k

Ag exp(t/7)

—_———_—
t t(1 + exp(t/7))
which explains the convergence A — Ag for ¢ < 7.
Concerning the relation between 7 and the system size
L, as reported in Fig.(7)the numerical simulations con-
firm that the value of 7 converges to 7 ~ 1/kvQs for
N > 5. This confirms the independence of our findings
on the parameters k and Q, showing an adaptation of the
dynamics on different timescales.

1
>T1 ?7 (15)

6.1.4. Impact of T on the removal of a URAF

We also studied the case of the removal of a URAF,
which showed that in this case the time-derivative of
A(M)/t does not become positive at any moment if the
seed is removed at ty < 7, while the dynamics remains
unchanged compared to Fig; () if 7o > 7. This shows
once more that for # > 7 the dynamics does not depend
anymore on the initial URAF and the boost of complex-
ity derives from a wave of chemical reactions initially
induced by the catalytic seed.

6.2. Long term behaviour

For what regards the behaviour for # > 7, we find that
for t > 7 the value of A reaches a long temporal plateau
after increasing for a very long time interval. We call
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A the value of A on this plateau. Fig(8) shows the N-
scaling of A, for ¢ > 7.
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Figure 8: Values of A, for Fp = 10 and K = 10* (red dots). Black
dashed line: Ao, ~ exp(N/2).

This dependence on N is a direct consequence of the
definition of A(M). In particular, one can show that
A(M) is dominated by the terms with higher assembly
index:

- 1
Aw = — ) (npm—Dexplay) = (16)
N 2

e“max

~

= Ny Q(amax) = gflmex n(amax)

where Q(a,,,) is the total number of molecules with as-
sembly index a,,,, and n(a,,.) their density.

By using the approximation of Eq.(6), we get

Ax(L1))

Al exp((L1 = L»)/2) a7

which explains well the results reported in Fig(8)), show-
ing an evidence for unbounded OEE in absence of finite-
size effects for L — oo

6.3. Imposition of a URAF at different t,

Lastly, we decided to study the effects of the introduc-
tion of a URAF at times different than 7y = 0 to check
whether the dynamics studied in the previous sections
does or not depend on the configuration of the system.
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Figure 9: Curves of total assembly A/f) (top) and A/t (bottom) for
different values of the time of introduction of the URAF ¢y reported in
the legend box on the top right side of the plot. Curves averaged over
n = 50 realisations.

As reported in Fig(9), we found that the reaction of the
system after the introduction of a URAF is independent
on the value of 7y, showing the temporal universality of
the complexity boost in the Kauffman model.

7. Further Developments

We analysed the impacts of the emergence of an
auto-catalytic network on the dynamics of the assembly
of the Kauffman model. We interpreted auto-catalysis
as the simplest representation of organisational closure
for a system, and the assembly as a measure of its
complexity. We explored the correlation between the
size of the auto-catalytic cycles and the assembly and
showed the effect on the assembly of cycles of different
sizes. We showed that the emergence of auto-catalysis
is a critical event for the dynamics of the assembly,
because even the smallest cycle brings drastic changes
to the dynamics of the chemical system. In particular,
numerical simulations show that the solely presence of
a minimal auto-catalytic cycle is enough to cause the
emergence of an open-ended dynamics of the assembly
as defined by [25l], regardless of the choice of the model
parameters. The Kauffman model shows this pattern
in different conditions and for different choices of the
parameters. Every time we detected an open-ended
behaviour, the only invariant was the auto-catalysis.

These results that we found analysing the dynamics
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of the Kauffman model could be further analysed on
different variations of the model. A first option for a
variant is the case in which p., is not a constant but
adapts to keep constant either P(r, cat) or the catalytic
fraction of the system. Another variant is the model
where a pro/against ancestral bias can be introduced
on p.; for a potential catalyst if at least one of the
molecules involved in the reaction is an ancestor.
Despite in this article we chose to study the simplest
version of the Kauffman model, the same results shall
be found also in its variations.

From the point of view of the nucleation theory, another
research line could investigate in detail the dynamics
of the auto-catalytic cycles for non-null values of p4.
We expect the nucleation of the auto-catalytic nucleus
to boost even more the assembly dynamics, way further
than the simple plateau that we found for p.,, = 0. In
particular, we expect the system to show a non-null
derivative of A/t during the nucleation for non-null
values of p.4.

Furthermore, one other important aspect to study is
the role of the topology of the auto-catalytic cycles
and their sub-cycles on the boost of complexity. For
example, we expect higher connected cycles to have a
higher boosting power as well as it should be for cycles
with simpler topology.

Finally, one last research direction is justified by the
search of a better measure of the complexity for a
system such as Kauffman’s. We are convinced that
a more specific definition of assembly for binary
molecules should be provided in order to unveil more
features of OEE dynamics in similar frameworks. In
particular, while for relatively short binary molecules
the calculation of the assembly index represents quite
well the historicity of the system, for long non-binary
molecules such as the DNA this approximation might
not be valid anymore. For example, a re-definition
of the assembly index counting the length of the
compressed size of each molecule could uncover more
features in the case of multidimensional non-binary
molecules.

8. Conclusions

With this work we discussed the emergence of a so-
called open-ended evolution in a pretty simple case of
the Kauffman model in the presence of auto-catalytic
cycles using the assembly theory. We showed evidence
of a causal relation between organisational closure and
OEE when interpreting the assembly of the system as
its historical complexity.



While this work represents a promising area of study of
biological evolution, more research is required to build a
solid bridge between the knowledge of physical objects
and that of biological entities. If life has long evaded the
full understanding of scientists, physics might one day
uncover its secrets by looking at the symmetries that life
still leaves on its evolutionary path.
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