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An Automated Threat Intelligence Framework for
Vehicle Road Cooperation Systems

Prabhat Kumar, Randhir Kumar, Alireza Jolfaei and Nazeeruddin Mohammad

Abstract—Vehicle Road Cooperation Systems (VRCS) use
next-generation Internet technologies, including 5G, edge com-
puting, and artificial intelligence to improve mobility, com-
fort, and travel efficiency. Internet of Vehicles (IoV) ecosystem
serves as the technological backbone for VRCS by enabling
seamless communication and data exchange between vehicles,
infrastructure, and traffic management centers. This enables
real-time, high-speed communication, efficient data processing,
and enhanced security, fostering the development of autonomous
driving, smart traffic management, and seamless connectivity
within the VRCS ecosystem. At the same time, cyber attacks have
become more complex, persistent, organized, and weaponized
in IoV network. Threat Intelligence (TI) has emerged as a
prominent security approach to obtain a complete view of the
dynamically growing cyber threat environment. On the other
hand, modeling TI is a challenging task due to the limited labels
available for different cyber threat sources. Second, most of
the available designs requires a large investment of resources
and use hand-crafted features, making the entire process error-
prone and time-consuming. To tackle these challenges, this
paper presents TIMIF, a deep-learning-based threat intelligence
modeling and identification framework for Intelligent IoV and
is based on three key modules: first, the proposed TIMIF
adopts an Automated Pattern Extractor (APE) module to extract
hidden patterns from IoV networks. Employing its output, we
design a TI-Based Detection (TIBD) module to detect abnormal
behavior and TI-Attack Type Identification (TIATI) module to
identify attack types. Extensive experiments are carried out on
three different publicly intrusion data sources namely HCRL-
car hacking, ToN-IoT and CICIDS-2017 to illustrate the utility
of TIMIF framework over some commonly used baselines and
state-of-the-art techniques.

Index Terms—Cyber threats, Deep Learning (DL), Internet of
Vehicles (IoV), Threat Intelligence (TI), Vehicle Road Coopera-
tion Systems

I. INTRODUCTION

Vehicle-Road Cooperation Systems (VRCS) represent an
innovative approach to improving road safety and traffic
management by fostering collaboration between vehicles and
the surrounding road infrastructure [1]. The Internet of Ve-
hicles (IoV) plays a pivotal role in enabling VRCS. IoV
encompasses a network of interconnected vehicles, roadside
sensors, and traffic management centers, facilitating real-time
data exchange and communication [2]. Thus, IoV creates
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an intelligent integrated network to exchange information
directly or indirectly between vehicles and public networks
using Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I) communication to make an efficient, safer and improved
transportation system [3]. Recently, with the emergence of 5G-
enable communication network, edge computing, and AI, there
has been a significant growth in the number of users and it
is anticipated that IoV will provide $1400 U.S. benefits per
vehicle, per year [4]. However, due to the IoV openness, par-
ticularly data exchange between IoV, infrastructure, and traffic
management centers, it is frequently targeted by malware (e.g.,
the Trojan horse and the worm) and some major cyberattacks,
such as Denial of Service (DoS) and Distributed Denial
of Service (DDoS), pose significant threats with profound
implications for the memory and computational capabilities
of vehicles. DoS attacks involve overwhelming a vehicle’s
communication channels or processing resources, rendering it
unable to respond to legitimate requests [5]. DDoS attacks, on
the other hand, amplify the impact by coordinating multiple
compromised devices to flood a vehicle’s systems. These at-
tacks not only disrupt critical V2V and V2I communication in
IoV ecosystem, but also strain the memory and computational
resources of the vehicle’s onboard systems. The implications
are twofold: First, they can lead to delays or failures in essen-
tial safety-critical functions like collision avoidance, putting
lives at risk [6]. Second, the increased computational load can
drain the vehicle’s resources, potentially leading to reduced
performance and safety compromises. Securing IoV systems
within the IoV ecosystem is of utmost importance to guarantee
the safety and security of connected and autonomous vehicles
within our ever-expanding and interconnected transportation
network [7].

Recent cyberattacks have brought to the forefront the short-
comings of conventional security methodologies, including
firewalls and intrusion detection and prevention systems [8].
These traditional approaches hinge on heuristic and passive
attack patterns, rendering them ineffective in detecting novel
threat variants [9], [10]. Consequently, organizations world-
wide are exhibiting an elevated willingness to leverage the
collaborative exchange of Threat Intelligence (TI). This ap-
proach enables them to cultivate a comprehensive understand-
ing of the swiftly evolving cyber threat landscape and fortify
their defenses against persistent, sophisticated, organized, and
weaponized cyberattacks. TI refers to any information that can
assist a company in identifying, assessing, monitoring, and
responding to cyber-threats [11]. In the age of big data, it is
crucial to remember that modeling TI refers to information that
has been gathered, evaluated, mined, and transformed into a
set of strategies or preventive measures that can be taken in
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response to a current or evolving cyber-threats ahead of time.
For example, spam URLs, brute force login threats, botnet
node and malware activities are potential threats to domain
name infrastructure component. Identifying the attack types
of a network element improves both early threat warning and
specific defensive actions [12].

II. SYSTEM MODELS

The applicable network and threat models that have been
utilized to create and assess the proposed TIMIF framework
are discussed briefly in this subsection.

1) Network Model: The VRCS network is shown in Fig.
1 that consist three layers: the physical layer, virtual layer,
and management layer. The physical layer includes various
personal devices, Road Side Units (RSUs), intelligent vehicles
equipped with ambient, backscatter sensors. Each vehicle has
its own On-Board Unit (OBU) and IoT devices that collect
environmental data and captures various critical events such as
vehicles situations, conditions of surrounding environment and
driving patterns. These entities are the primary data sources for
TIMIF, where the Automated Pattern Extractor (APE) module
first interacts with the network. The assumption here is that
despite the resource constraints of On-Board Units (OBUs) in
vehicles, they can still effectively capture and communicate
critical data related to environmental conditions and potential
security events. This data is essential for the initial pattern
extraction process, which seeks to identify hidden patterns
indicative of cyber threats. At the virtual layer, edge servers,
equipped with high-performance computing resources, are
tasked with the initial processing of data collected from the
physical layer. This layer is crucial for TIMIF, particularly
for the TI-Based Detection (TIBD) module, which utilizes
the processed data to detect abnormal behaviors indicative of
cyber threats. The proximity of edge servers to the data sources
reduces communication delays, ensuring timely threat detec-
tion. The management layer encompasses cloud centers that
are responsible for more complex processing and storage tasks.
This layer supports the TI-Attack Type Identification (TIATI)
module by providing the computational resources needed to
analyze the vast amounts of data and identify specific attack
types. The assumption here is the layer’s ability to maintain
end-to-end elasticity, ensuring that the TIMIF framework can
scale according to the volume of data and complexity of threats
encountered. Throughout the network model, we assume that
communication occurs over potentially insecure channels, a
reality that underscores the importance of TIMIF’s role in
the IoV ecosystem. This assumption drives the necessity for
robust threat detection and identification mechanisms capable
of operating effectively despite the inherent vulnerabilities of
these communication pathways.

2) Threat Model: In the domain of cyber security, par-
ticularly within the scope of TI for the IoV, the selection
of a robust and comprehensive threat model is paramount.
Our research employs the commonly ”Dolev-Yao (DY)” threat
model [13]. According to the DY model, all participating
entities in the network model exchange the information over
an insecure (public) channel using Internet. An attacker A
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Fig. 1: Network Model of TIMIF framework

can intercept the communicated information, and also can
modify or delete the internal contents of messages that are
already in network. Moreover, A can deploy its own botnets
and can launch various attacks such as ransomware, DoS,
SSH-Patator, FTPPatator, DoS-Hulk, DoS-Slowhttptest, DoS-
Goldeneye, scanning, injection, man-in-the-middle attack and
so on in IoV network [14]. As a result, legitimate users
of the IoV environment may be barred to obtain data from
smart equipment, or the data may be released or modified
in an illegal way. Hence, it is important to safeguard IoV
communication from such threats.

A. Motivation

The most basic requirements for any cyber threat early
detection and warning system should undoubtedly involve TI
modelling and threat type identification for a network. Due
to their effective ability to comprehend vast amounts of data
and counteract hidden threat occurrences, artificial intelligence
(AI)-based TI models have attracted significant attention from
business and academia [15], [16]. However, there are three
key limitations that prevents faster realization of AI-based
TI models. First, there is limited threat type labels available
for data generated from infrastructure nodes involved in TI.
Manual effort or labeling is still heavily used in threat type
analysis to provide insight of attack behaviors, and more
significantly, to generate TI for attack detection. Moreover,
manual labeling is time consuming and error-prone procedure
that necessitates a large investment of resources [17]. As a
result, most security analysts and companies are concerned
about how to reliably and effectively learn from limited labeled
infrastructure node data. Second, for developing intelligent
TI models, the majority of previous research has relied on
statistical, traditional Machine Learning (ML) and supervised
learning techniques. However, their models were complicated,
had low detection accuracy, high false alarm rates and lacked
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generalization capabilities, making them challenging to use
against dynamic threats [18]. Third, most of the previous
security approaches based on ML and DL techniques collects
and analyses network data from OBU or RSU to detect threats.
However, OBU and RSU have limited resources and therefore,
it impedes the network managers to sample adequate network
data for threat detection and identification [7].

B. Research Contribution

In designing of the efficient and reliable TI models, few
existing works adopted Deep-Learning (DL)-based approach.
However, these techniques used device data (e.g., opcodes)
that can cause late threat detection. On the other hand, pro-
posed TIMIF framework uses network traffic to analyze and
detect threats in IoV network. To the best of authors knowl-
edge, we are the first to design an automated TI modeling and
identification framework for IoV network. This work makes
several significant contributions.

• A novel automated threat intelligence modeling and iden-
tification framework named, TIMIF is designed using DL
techniques to efficiently detect threats in IoV network.

• An unsupervised and Automated Pattern Extractor (APE)
module is designed using proposed Bidirectional Long
Short-Term Memory Variational AutoEncoder (BLSTM-
VAE) algorithm to extract hidden patterns from IoV net-
work traffic datasets. Essentially, the proposed approach
solves the vanishing gradient problem and retains infor-
mation in an unidirectional manner, thereby, extending
the capabilities of standard VAE.

• A TI-Based Detection (TIBD) module is designed using
Bidirectional Gated Recurrent Unit (BGRU) algorithm to
detect abnormal instances. A TI-Attack Type Identifica-
tion (TIATI) module is designed by combining Extended
Self Attention (ESA) mechanism with Deep Bidirectional
Gated Recurrent Unit (ESA-DBGRU). This approach
selects sequences that is more relevant to extract more
discriminative features, and helps in identifying specific
attack types from IoV network, and thereby improves
overall detection and prediction accuracy.

• The proposed TIMIF framework is deployed at virtual
layer to collect network data from edge servers instead
OBU or RSU. The underlying approach is evaluated on
three different data sources of the HCRL-car hacking
(Oα) [19], ToN-IoT (Oβ) [20] and CICIDS-2017 (Oγ)
[21]. The experimental results are obtained by implement-
ing both the existing state-of-the-art and some commonly
used baseline techniques within our environment. This
implementation allows for a direct comparison, demon-
strating enhanced performance in identifying threat types.

The remainder of the paper is laid out as follows: The
Section III discusses the relevant study. The proposed TIMIF
framework and its components are depicted in Section IV.
The suggested approach’s performance analysis and compar-
ison with the baseline and state-of-the-art methodologies are
described in Section V. Finally, Section VI summarizes this
paper by outlining future research.

III. RELATED WORK

Threat modeling and identification based on ML and DL
techniques in IoV network is an emerging field. We were
unable to find any research work that could be directly
compared to the proposed approach. On the other hand, our
study draws on a variety of ongoing studies that utilise ML
and DL-based TI solutions. For instance, Koloveas et al. [11]
offered a machine learning (ML)-based system called ”intime”
that allowed security teams to identify, aggregate, evaluate,
and exchange TI from several well-known social networks.
Although this model employed a typical ML technique, it
only managed to attain a low overall accuracy of 87.51%. To
identify risks from the dark web social network, the authors
of [12] employed the Multi-Layer Perceptron (MLP) model
and doc2vec as a threat extraction tool. Overall accuracy for
the suggested model was 79.4%. A ML-based TI framework
for Industrial Control System (ICS) was developed by Atluri
et al. [16] and obtained 94.24% accuracy using the Bagging
Decision Trees (BDT) model. Usman et al. [17] introduced
a unique method to detect malicious Internet Protocol (IP)
during communication utilising dynamic malware analysis,
TI, ML, and data forensics. Several ML models were used
to access the effectiveness of the underlying strategy, with
Decision Tree (DT) obtaining 93.5% correct predictions. Noor
et al. [18] suggested an ML-based security framework to
identify cyber risks based on observed attack patterns and
achieved 92% accuracy. With the use of Classification and
Regression Trees (CART) for IoT networks, Alsaedi et al.
[14] developed a data-driven security solution and achieved
88.00% accuracy using the Oβ dataset.

Various researchers designed and surveyed security ar-
chitectures for IoV and considered the requirement of an
efficient and secured communication at the virtual layer as
a challenging issue [2], [3], [4]. Considering this various
researchers have studied, and discussed the advantage of DL
and statistical approaches in designing effective TI scheme.
For instance, Nie et al. [7] presented a deep Convolutional
Neural Network (CNN)-assisted security approach for IoV.
This scheme obtained accuracy of 97.60% by utilizing the
link loads of RSUs. Moustafa et al. [15] designed a TI
scheme that worked on two key modules. First, a smart data
management module was designed to handle heterogeneous
data sources and TI technique using beta Mixture-Hidden
Markov Models (MHMMs) statistical technique was designed
to monitor and recognise cyber-attacks in industrial settings.
The proposed scheme used Independent Component Analysis
(ICA) as feature extraction tool and performance was evalu-
ated using UNSW-NB15 and Power system dataset and model
achieved 98.45% and 96.32% accuracy, respectively. Zhang
et al. [5] proposed HPPELM for detecting intrusion in IoV
and evaluated their framework using NSL-KDD and CIC-IDS-
2017 datasets. Haddaji et al. [6] integrated Federated Learning
(FL) with Transfer Learning (TL) withinn Controller Area
Network (CAN) of IoV for detecting attacks using HCRL-car
hacking dataset. Similarly, authors in [22] and [23] also used
HCRL-car hacking dataset to proposed security mechanism
using deep learning technique.
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Ô(T :1) |

−−−−→
B(1:T ),

←−−−−
B(T :1)

)
P

(−−−−→
B(1:T ),

←−−−−
B(T :1)

)
d

(−−−−→
B(1:T ),

←−−−−
B(T :1)

)
, (1)

= log

∫
Qϕ

(−−−−→
B(1:T ),

←−−−−
B(T :1) |

−−−−→
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IV. OUR PROPOSED TIMIF FRAMEWORK

A. Problem Formulation

Let us consider from the physical layer of IoV net-
work N × T data records is constructed such that O ={(
O(1)

L ,Y(1)
)
,
(
O(2)

L ,Y(2)
)
,
(
O(T )

L ,Y(T )
)}

, O(I)
L ∈ RN ,

where T is the number of data sample and N is the length of
each data sample. The subscript L denotes that it is labeled
data. Divide the the labeled training set O into 70% unlabeled
data set Ô = O(1)

U ,O(2)
U , . . . ,O(T )

U ∈ RN by removing the
labels and construct testing set from remaining 30% labeled
set as O = O(1)

L ,O(2)
L , . . . ,O(T )

L ∈ RN . The corresponding
labels Y(I) ∈ {+1,−1} will be used to identify abnormal
behaviors and Y(I) ∈ {1, 2, . . . , C} will be used to identify the
attack types. Then, each sample O is normalized using min-
max normalization technique, discrete features are encoded
into numeric by using label encoding technique and missing
values are replaced by their column mean value. Our goal is to
use the unlabeled data Ô, and extract unknown threat patterns.
Further, the extracted data is used to analyse dynamic and
heterogeneous IoV traffic data to improve accuracy, detection
rate and decrease false alarm rate. In order to achieve above
goal, we design, and implement TIMIF framework that uses
APE module to extract threat patterns automatically, and
further the extracted data is feed into TIBD module, and TIATI
module to detect threat and its types, respectively. A high-level
architecture of TIMIF framework is illustrated in Fig 2. Each
module and its working is discussed below:

B. TI level 1 -Automated Pattern Extractor (APE) Module

An Automated Pattern Extractor (APE) module based
on DL technique is proposed that extracts spatial features
and temporal patterns from original network data in an
automated manner. This module takes discriminative spatial
measurements and determines feature relationships, resulting
in pattern notions that are simple and helpful. A BLSTM-VAE
algorithm is proposed to design the APE module, as illustrated
in Algorithm 1. The BLSTM-VAE is an unsupervised form
of VAE in which BLSTM networks serve as encoders and
decoders. Essentially, the proposed approach solves the
vanishing gradient problem and retains information in a
unidirectional manner, thereby, extending the capabilities of
standard VAE. The sequential inputs of IoV data can be
encoded as an equal-length sequence of latent variables using
the BLSTM-VAE technique [24]. The model consists of two
parts: an encoder En for mapping the input data Ô(1:T ) to
a hidden latent variable B(1:T ) by processing samples from
Ô(1) to Ô(T ) in forward direction and processing samples
in backward direction Ô(T ) to Ô(1) and a decoder De that
maps B(1:T ) back to Ô(1:T )′ by processing samples from
B(1) to B(T ) in forward direction and processing samples
in backward direction B(T ) to B(1), such that Ô(1:T )′ is
approximately equal to Ô(1:T ). We define a Gaussian prior
Pθ
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Ô(T :1)) parameterized by ϕ

and De as Pθ(
−−−−→
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and computed using Eq.(1) -Eq.(6). Then Eq.(2) is transformed
into Eq.(3) by using Jensen inequality technique [25].
In Eq.(6) the first term is a logarithmic reconstruction
likelihood and second term is Kullback–Leibler (KL)
divergence, P(
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Ô(1:T ),

←−−−−
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B(1:T ),
←−−−
B(T :1)

)
= µθ

(−−−−→
Ô(1:T ),

←−−−−
Ô(T :1)

)
+ σϕ

(−−−−→
Ô(1:T ),

←−−−−
Ô(T :1)

)
⊙ ϵ (ϵ ∼ N (0, I)) ,

(8)
The loss function of BLSTM-VAE can be written as,

L
(
θ, ϕ; (

−−−−→
Ô(1:T ),

←−−−−
Ô(T :1)); C

)
= −logPθ

(−−−−→
Ô(1:T ),

←−−−−
Ô(T :1)

)
.

(9)
where C is class label. The En latent variable (

−−−→
B(1:T ),

←−−−
B(T :1))

is used as a feature extractor on the input measurements,
allowing us to decrease the dimensionality of the original data
and get low-dimensional data. The BLSTM-VAE parameters
are optimized iteratively based on a gradient-descent algorithm
with the Adam optimizer. The reduced dimension data Ô(1:T )′

is feed to TIBD and TIATI module for threat and its type
detection.

C. Threat Intelligence Based Detection (TIBD) Module

The extracted intelligence provided by APE module is used
to design a DL-based TIBD module to identify threats in
IoV network. In the case of unseen data, DL techniques can
give more efficient generalization capabilities than traditional
ML algorithms. A Bidirectional Gated Recurrent Unit (BGRU)
algorithm is proposed to design TIBD module. Algorithm 2
discuss the steps used to train and test TIBD module. The
previous and next frames at time (T −1) and (T +1), respec-
tively, determine the ultimate production at time (T ) in the
BGRU arrangement. To be more specific, the forward hidden
state output (

−−→
G(1),

−−→
G(2), . . . ,

−−→
G(N )) and backward hidden state

Algorithm 1 Training Procedure of the Proposed DL-based
Automated Pattern Extractor (APE) module to extract threat
patterns from IoV network

1: Input: Unlabeled Dataset (Ô(1:T )); latent variable B(1:T ); train-
ing epochs P; hyperparameter a; batch size B; class label
ci ∈ (C).

2: Output: Encoded feature matrix (Ô(1:T )′)
3: Preprocess (Ô(1:T )): includes label encoding for discrete fea-

tures, normalization, and filling in missing values.
4: θ : Encoder parameters;
5: ϕ : Decoder parameters;
6: repeat
7: for Number of P do
8: for Number of B do
9: Train BLSTM-VAE using DKL divergence by

processing samples from Ô(1) to Ô(T ) in
forward direction and processing samples in backward
direction Ô(T ) to Ô(1) and vice-versa.

10: Calculate loss L
(
θ, ϕ; Ô(1:T ), c, a

)
with Eq.(2).

11: Back-propagate and Update L
(
θ, ϕ; Ô(1:T ), c, a

)
using gradients via a gradient-descent algorithm

to change En, De network.
12: end for
13: end for
14: until Convergence of Eq.(2) is reached
15: Get the encoded latent vector B(1:T ) of the BLSTM-VAE to

construct the new feature matrix (Ô(1:T )′) of IoV network.
return New-Encoded pattern Ô(1:T )′

output (
←−−
G(1),

←−−
G(2), . . . ,

←−−
G(N )) is concatenated to compute final

BGRU output [26]. The −→ denotes forward process and ←−
represents backward process. The BGRU’s transition function
are computed as follows [27]:

−→
GT = F

(−−−→
Ô(T )′ ,

−−−−→
G(T −1);

−−−→
ΘGRU

)
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=



−−→
U (T ) = σ

(−−→
V(U)
−−−→
Ô(T )′ +

−−−→
M(U)

−−−−→
G(T −1) +

−→
BU

)
,

−−→
R(T ) = σ

(−−→
V(R)

−−−→
Ô(T )′ +

−−−→
M(R)

−−−−→
G(T −1) +

−→
BR

)
,

−−→
C(T ) = tanh

[
−−→
V(C)
−−−→
Ô(T )′ +

−−−→
M(C)(

−−→
R(T ) ⊙

−−−−→
G(T −1)) +

−→
BC

]
,

−−→
G(T ) =

(−−−−−→
1− U (T )

)
⊙
−−−−→
G(T −1) +

−−→
U (T ) ⊙

−−→
C(T ).

(10)
←−
GT = F

(←−−−
Ô(T )′ ,

←−−−−
G(T +1);

←−−−
ΘGRU

)

=



←−−
U (T ) = σ

(←−−
V(U)
←−−−
Ô(T )′ +

←−−−
M(U)

←−−−−
G(T +1) +

←−
BU

)
,

←−−
R(T ) = σ

(←−−
V(R)

←−−−
Ô(T )′ +

←−−−
M(R)

←−−−−
G(T +1) +

←−
BR

)
,

←−−
C(T ) = tanh

[←−−
V(C)
←−−−
Ô(T )′ +

←−−−
M(C)(

←−−
R(T ) ⊙

←−−−−
G(T +1)) +

←−
BC

]
,

←−−
G(T ) =

(←−−−−−
1 + U (T )

)
⊙
←−−−−
G(T +1) +

←−−
U (T ) ⊙

←−−
C(T ).

(11)

where
−−→
R(T ) and

←−−
R(T ) are reset gate,

−−→
U (T ) and

←−−
U (T ) are

update gate,
−−→
C(T ) and

←−−
C(T ) denotes candidate cell, and

−−→
G(T )

and
←−−
G(T ) are final state of forward and backward process,

respectively.
−−−→
ΘGRU and

←−−−
ΘGRU denotes parameters set and

are shared and learnt during model training.
−−→
V(R),

−−→
V(U),

−−→
V(C)

and
←−−
V(R),

←−−
V(U),

←−−
V(C) denotes the weight matrices from in-

put
−−−→
Ô(T )′ and

←−−−
Ô(T )′ to hidden layer for forward pass.−−−→

M(R),
−−−→
M(U),

−−−→
M(C), and

←−−−
M(R),

←−−−
M(U),

←−−−
M(C) denotes the

weight matrices between two consecutive hidden state for
backward pass.

−→
BR,
−→
BU ,
−→
BC and

←−
BR,
←−
BU ,
←−
BC denotes bias term

for all gates present in forward and backward process. σ
and tanh denotes non-linear activation function. ⊙ represents
elementwise product between two elements. In a summary,
BGRU hidden element representation

−→
GT is the concatenated

vector of forward and backward method outputs as follows:

−→
GT =

−−−−→
G(T −1) ⊕

←−−−−
G(T −1) (12)

where ⊕ is the elementwise summation of these corresponding
elements of two vectors. The BGRU iterates the following
steps (Eq. 10 to 12) in different timesteps depending on how
many outputs the APE module produces during the training
stage. The sigmoid function is used to move the output of
BGRU layers to the output layer. The output layer consist of
an Adam optimizer with a binary crossentropy loss function to
perform the binary intrusion detection operation. The LOSS
function is computed using Eq.13,

LOSS
(
Y(I), Ŷ(I)

)
= − 1

N

N∑
I=1

Y(I) · log Ŷ(I)

+
(
1− Y(I)

)
·
(
1− Ŷ(I)

) (13)

In order to detect complex threat behaviors, the BGRU-
based TIBD module acquires the hidden patterns retrieved
from the APE module as indicated in Algorithm 2 from
the IoV network at each timestep (T ). The patterns of
Ransomware assaults collected from the APE module, for
example, [0.47584813, 0.21475718, 0.69874172, 0.96317582,

Algorithm 2 Training Procedure of the Proposed DL-based
TIBD module for threat detection in IoV network

1: Input: APE Output as Training set: Ô(1:T )′ ; Test set O; training
epochs P; hyperparameter a; batch size B; class label ci ∈ (C).

2: Initialization h0(T ) = Ô(1:T )′ , ∀ : T ∈ [1, tn]
3: Output: Normal→ 0, Abnomal→ 1,
4: Preprocess O: includes label encoding for discrete features,

normalization, and filling in missing values.
5: repeat
6: for Number of P do
7: for Number of B do
8: for T = 1→ tn do
9: GRU calculates (

−−→
G(1),

−−→
G(2), . . . ,

−−→
G(N )) through

forward pass using Eq. (3)
10: For the forward pass, use Eq. (3) to determine

the reset, candidate cell, update, and final states
for each time step and store output activations.

11: end for
12: for T = tn → 1 do
13: GRU calculates (

−−→
G(N ), . . . ,

−−→
G(2),

−−→
G(1)) through

backward pass using Eq. (4)
14: For the backward pass, use Eq. (4) to determine

the reset, candidate cell, update, and final states
for each time step and store output activations

15: end for
16: The final BGRU output is then calculated as the

concatenated vector of outputs of forward and
backward processes using Eq. (5)

17: BGRUTrain model is obtained
18: Compute LOSS according to Eq. (6).
19: Use Adam as convergence optimizer.
20: end for
21: end for
22: until Convergence of Eq. (6) is reached
23: while True do
24: Predict = BGRUTrain (O)
25: if Predict.value == 0 then
26: return Normal
27: else
28: return Abnormal
29: end if
30: end while

0.78512380, 0.63637120, 0.98736715, 0.66227415,
0.74187214, 0.69742147], are sent to the TIBD module
for detection of abnormal instances.

D. TI level 2 -Attack Type Identification (TIATI) Module

The proposed TIBD module can assist security analyst in
identifying abnormal behaviors, based on the patterns ex-
tracted by the APE module. However, it doesn’t recognize
the exact threat types of abnormal traffic. Therefore, we
design a DL-based TI level 2 -TIATI module that adds an
additional context to the APE module and identifies to which
threat a pattern belongs. However, all patterns extracted from
APE module may not contribute equally in identification of
threat types. Therefore, greater attention should be assigned to
more useful extracted patterns. On the other hand, the BGRU
performs well in terms of sequence feature extraction, forward
and backward iterations, but it neglects to pay attention to
crucial sequence information, which is critical since not all
segments in sequence data are equal in relevance. Identifying
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the relevant sequence elements to focus on during network
training is advantageous. Thus, a TIATI module is designed us-
ing Extended Self-Attention-based-Deep Bidirectional Gated
Recurrent Unit (ESA-DBGRU) algorithm. Algorithm 3 discuss
the steps used in designing TIATI module. In this study, the
additional discriminative temporal information is extracted by
employing ESA mechanism. The ESA is logical expansion of
additive attention at the multi-dimensional feature level and
is used to assign weights to each IoV data sample by exam-
ining the inherent significance of each sample [28]. Unlike
traditional self-attention mechanisms, which assign value to
each recurrent encoded slice and collate this information and
construct a concluding interpretation, the ESA can effectively
define the precise value by measuring the parity in each sample
from separate points, and the resulting K(I)

′

is regarded
as a featurewise score vector from the i-th sample G(I)

′

.
Additionally, in and out of the activation function two bias
terms are added by the ESA mechanism. We can express the
i-th featurewise score vector K(I)

′

as,

K(I)
′

= F
(
G(I)

′

V(I)

)
=M(T )σ

(
M(1)G(I)

′

V(I) +M(2)V(I) + B(1)

)
+ B,

(14)

where F
(
G(I)

′

V(I)
)

denotes the intrinsic parity of the i-th
encoded IoV data sample and based on the linear transfor-
mation of feature vector G(I)

′

, V(I) represents the generated
aligned pattern vector having same dimension as the input
feature vector. σ(.) denotes (ELU) activation function, where
M represents the weight and B denotes bias terms of ELU
activation function. The M(1) and M(2) denotes weights
and B(1) is the bias term. We can represent probabilities of
entire samples as PS =

{
PS(1),PS(2), . . . ,PS(N )

}
and the

probability of i-th IoV sample is written as:

PS(I) =

exp

(
K(I)

′ (T )

· G(I)
′
)

∑I=1→N exp
(
K(I)

′ (T )
· G(I)

′
) (15)

Finally, the extracted features by the ESA mechanism are
represented by A =

{
A1,A2, . . . ,AN}

, and the i-th attentive
feature retrieved by the ESA mechanism is calculated as:

A(I) = PS(I) · G(I)
′

. (16)

The softmax layer is used in the final portion of the
proposed TIATI module to estimate the probability that a
given pattern belongs to a certain threat category. Therefore,
the retrieved spatiotemporal attentive characteristics, A ={
A1,A2, . . . ,AN}

, is used by the softmax function as input
to identify specific threat type as:

P = softmax (MA+ B) (17)

where P =
{
P1,P2, . . . ,PN}

is the anticipated probability
of the i-th IoV data sample, andM is the weight and B denotes
the bias components of softmax function. Finally, we calculate

Algorithm 3 Training Procedure of the Proposed DL-based
TIATI module for threat type identification in IoV network

1: Input: APE Output as Training set: Ô(1:T )′ ; Test set O; training
epochs P; hyperparameter a; batch size B; class label ci ∈ (C).

2: Initialization h0(T ) = Ô(1:T )′ , ∀ : T ∈ [1, tn]
3: Output: Normal → 0, Attack1 → 1, Attack2 → 2,

Attack3 → 3, . . . AttackN → N .
4: Preprocess O: includes label encoding for discrete features,

normalization, and filling in missing values.
5: repeat
6: for Number of P do
7: for Number of B do
8: for T = 1→ tn do
9: GRU calculates (

−−→
G(1),

−−→
G(2), . . . ,

−−→
G(N )) through

forward pass using Eq. (3)
10: For the forward pass, use Eq. (3) to determine

the reset, candidate cell, update, and final states
for each time step and store output activations.

11: end for
12: for T = tn → 1 do
13: GRU calculates (

−−→
G(N ), . . . ,

−−→
G(2),

−−→
G(1)) through

backward pass using Eq. (4)
14: For the backward pass, use Eq. (4) to determine

the reset, candidate cell, update, and final states
for each time step and store output activations

15: end for
16: The final BGRU output is obtained by concatenating

outputs of forward and backward processes using
Eq. (5).

17: DBGRUTrain model is obtained
18: Add ESA layer to DBGRUTrain using Eq. (7)-

Eq. (9) to build ESA-DBGRU model.
19: Compute LOSS according to Eq. (11).
20: Use Adam as convergence optimizer
21: end for
22: end for
23: until Convergence of Eq. (11) is reached
24: while True do
25: Predict Attack-Type = ESA-DBGRUTrain (O)
26: Decision = Predict Attack-Type
27: return Decision
28: end while

the cross-entropy loss to measure the output layer error across
all labeled samples as:

LOSS = −
N∑

I=1

Ŷ(I) log
(
P(I)

)
(18)

where the label of the i-th IoV data sample is Ŷ(I), and
the smaller cross-entropy LOSS implies increased threat
identification accuracy. In summary, we developed a TIATI
module that uses the DBGRU algorithm to investigate the
temporal information of various IoV data samples, and further
we incorporate the ESA mechanism to assign weight to IoV
samples depending on their relevance. Finally, for IoV threat
type identification, spatiotemporal attentive characteristics is
acquired, which can assist a security team in performing a
suitable defensive and mitigation strategy.

V. PERFORMANCE ANALYSIS

This section explains the data used in the current study,
including all experimental settings and procedures. We also
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provide an analysis and discussion of the findings.

A. Experimental Setup

We implement TIMIF with Keras 2.3.1 using Python 3.6
programming language. During training, the batch size used
was 50 with Adam optimizer and 10 epochs. The training
procedure used Kullback–Leibler divergence, binary cross-
entropy and cross-entropy loss functions for APE, TIBD and
TIATI modules, respectively. The Exponential Linear Unit
(ELU) activation function for hidden layer, and sigmoid for
output layer of APE, TIBD and softmax for TIATI were used.
The model uses 0.2 dropout rate. The findings are based
on HCRL-car hacking (Oα) [19], ToN-IoT (Oβ) [20] and
CICIDS-2017 (Oγ) [21] network datasets, which comprise
701832 normal and 116608 attack instances with 5 classes,
300000 legitimate, and 161043 illegitimate occurrences having
10 classes and 2035505 legitimate and 390222 illegitimate
occurrences having 11 different outcomes, respectively. The
HCRL-Car Hacking Dataset (Oα) [19] is specifically gener-
ated to simulate real-world car hacking scenarios, encompass-
ing a wide range of attacks relevant to the Internet of Vehicles
(IoV) domain, such as DoS, fuzzy, gear spoofing, and RPM
gauge malfunctions. Its inclusion in our experiments is pivotal
due to the TIMIF framework’s focus on IoV security, offering a
unique opportunity to test our framework’s ability to detect and
classify sophisticated vehicle-specific cyber threats. The ToN-
IoT dataset (Oβ) [20] is a comprehensive collection of IoT
and IoV network traffic, including a variety of attack vectors
such as DDoS, botnet, and data infiltration, among others.
It represents a diverse IoT ecosystem, making it invaluable
for testing the TIMIF framework’s versatility in identifying
and mitigating threats across different IoT and IoV scenarios.
The CICIDS-2017 (Oγ) [21] is the most comprehensive and
recent datasets for network intrusion detection, the CICIDS-
2017 dataset features a wide array of simulated real-world
cyber attacks (e.g., DoS, port scans, botnets, and web attacks).
The dataset’s varied attack scenarios and realistic network
traffic patterns enable a thorough assessment of TIMIF’s
detection and classification capabilities, ensuring its relevance
for current and future IoV security challenges.

All three datasets were divided into training and testing
sets, with 80% allocated for training and 20% for testing. The
preprocessing steps outlined in [29] are applied. To evaluate
the effectiveness of the proposed scheme, we employ a range
of metrics including ACcuracy (AC), Detection Rate (DR),
False Alarm Rate (FAR), PRecision (PR), and the F1 score,
as specified in [29]. In order to showcase the superiority
of the proposed TIMIF framework, we compare it against
conventional baseline methods and existing state-of-the-art
approaches.

B. Evaluation of APE-TIBD Module

The effectiveness of the proposed APE-TIBD module is
evaluated based on the Oα, Oβ and Oγ datasets with respect to
obtained AC, DR, PR, F1, FAR, Loss, confusion matrix and
ROC Curve. Table I shows the results obtained from APE-
TIBD module based on various TI performance metrics. A

TABLE I: Result obtained from APE-TIBD module based on
various performance metrics

Dataset AC DR PR F1 FAR Loss
Oα 99.98 99.88 99.98 99.93 0.33 0.340
Oβ 99.98 99.95 100.00 99.97 0.00 2.09e-04
Oγ 98.65 92.21 90.46 91.33 1.87 0.031
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Fig. 3: Confusion matrices obtained from APE-TIBD module

0.00 0.25 0.50 0.75 1.00
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

APE-TIBD (area = 1.000)

(a) The AU-ROC Curve
obtained for Oα dataset

0.00 0.25 0.50 0.75 1.00
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

APE-TIBD (area = 1.000)

(b) The AU-ROC Curve
obtained for Oβ dataset

0.00 0.25 0.50 0.75 1.00
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

APE-TIBD (area = 0.996)

(c) The AU-ROC Curve
obtained for Oγ dataset

Fig. 4: AU-ROC Curves obtained from APE-TIBD module

TI scheme with high accomplished values of AC, DR, PR,
F1 and low FAR and loss is considered as a proficient threat
detection mechanism. It can be observed, that our proposed
APE-TIBD module has obtained 99.98%, 99.98% and 98.65%
AC, 99.88%, 99.95% and 92.21% DR, 99.98%, 100.00%
and 90.46% PR, 99.93%, 99.97% and 91.33% F1 score and
has reduced FAR to 0.33%, 0.00% and 1.87% with 0.340%,
2.09e-04% and 0.031% loss using Oα, Oβ and Oγ datasets,
respectively.

Fig. 3 illustrates the confusion matrix obtained for APE-
TIBD module to evaluate the performance. Based on the off-
diagonal elements of the matrix, we see that the proposed
approach has lowered the misclassification to 48, 21 and
20564 (i.e., adding False Positives (FPs) and False Negatives
(FNs)) for Oα, Oβ and Oγ datasets, respectively. Overall, the
confusion matrix clearly depicts the excellent capability of
APE-TIBD module. The area under the curve is created by
plotting the True Positive (TP) and FP rates in two dimensions.
The overall performance of the system is measured by the
area under the curve (AU-ROC), with larger area under the
curve indicating better model performance. As shown in Fig.
4, the AU-ROC value is 1.0, 1.0 and 0.996 for Oα, Oβ and
Oγ datasets, respectively. Thus, the obtained AU-ROC clearly
indicates the out performance of the proposed algorithm.
The RoC curve specifies the degree of difference between
normal and attack data, making it the most significant model
performance metrics.

C. Evaluation of APE-TIATI Module

The performance of APE-TIATI module is accessed in terms
of macro-averaged AC, DR, PR, F1 and per-class PR, DR,
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Fig. 5: Confusion matrices obtained from APE-TIATI module

0.00 0.02 0.04 0.06 0.08 0.10
False Positive Rate

0.990

0.992

0.994

0.996

0.998

1.000

Tr
ue

 P
os

iti
ve

 R
at

e

micro-average ROC for APE-TIATI (area = 0.99999)
macro-average ROC for APE-TIATI (area = 0.99995)
ROC curve of class 0 (area = 0.99994)
ROC curve of class 1 (area = 1.00000)
ROC curve of class 2 (area = 1.00000)
ROC curve of class 3 (area = 1.00000)
ROC curve of class 4 (area = 0.99979)

(a) The AU-ROC Curve obtained for Oα dataset

0.0 0.1 0.2 0.3 0.4 0.5
False Positive Rate

0.9960

0.9965

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000
Tr

ue
 P

os
iti

ve
 R

at
e

micro-average ROC for APE-TIATI (area = 0.99986)
macro-average ROC for APE-TIATI (area = 0.99971)
ROC curve of class 0 (area = 0.99904)
ROC curve of class 1 (area = 0.99944)
ROC curve of class 2 (area = 0.99972)
ROC curve of class 3 (area = 0.99939)
ROC curve of class 4 (area = 0.99993)
ROC curve of class 5 (area = 0.99998)
ROC curve of class 6 (area = 0.99996)
ROC curve of class 7 (area = 0.99999)
ROC curve of class 8 (area = 0.99991)
ROC curve of class 9 (area = 0.99971)

(b) The AU-ROC Curve obtained for Oβ dataset

0.0 0.1 0.2 0.3 0.4 0.5
False Positive Rate

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Tr
ue

 P
os

iti
ve

 R
at

e

micro-average ROC for APE-TIATI (area = 0.99985)
macro-average ROC for APE-TIATI (area = 0.99895)
ROC curve of class 0 (area = 0.99805)
ROC curve of class 1 (area = 0.99982)
ROC curve of class 2 (area = 0.99989)
ROC curve of class 3 (area = 0.99826)
ROC curve of class 4 (area = 0.99965)
ROC curve of class 5 (area = 0.99996)
ROC curve of class 6 (area = 0.99958)
ROC curve of class 7 (area = 0.99985)
ROC curve of class 8 (area = 0.99934)
ROC curve of class 9 (area = 0.99767)
ROC curve of class 10 (area = 0.99636)

(c) The AU-ROC Curve obtained for Oγ dataset

Fig. 6: The AU-ROC Curve obtained from APE-TIATI module

TABLE II: Result obtained from APE-TIATI module based on
various performance metrics

Dataset AC DR PR F1 Loss
Oα 99.97 99.98 99.88 99.96 0.002
Oβ 99.20 97.77 99.75 98.30 0.026
Oγ 99.02 84.73 94.34 82.63 0.022

TABLE III: Per-class prediction results (%) for APE-TIATI
module on Oα dataset.

Parameters Normal RPM Gear DoS Fuzzy
PR 99.97 100.00 100.00 100.00 99.91
DR 99.99 100.00 100.00 100.00 99.24
F1 99.98 100.00 100.00 100.00 99.57

FAR 0.00161 0.00 0.00 0.00 0.00002
Terms & Abbreviations: PR:Precision Rate; DR: Detection Rate; FAR: False
Alarm Rate.

F1, FAR for all classes present in both datasets. Then we
use validation loss, multi-class confusion matrix and AU-
ROC curve. Table II shows macro-averaged results obtained
from APE-TIATI module under multi-class evaluation. The
numerical values for AC, DR, PR, F1 is between 97%-99%
with validation loss of 0.026% using Oα, Oβ and for Oγ it is
between 82%-99% with 0.022% validation loss. Thus, Table II
clearly depicts that the A-DBGRU based APE-TIATI module
has learned benign and threat traffic signatures outstandingly.
Additionally, Table III, Table IV and Table V describes the
performance of APE-TIATI module in terms of per-class PR,
DR, F1 and FAR. For the Oα dataset, can identify normal and
different attack types (RPM, GEar, DoS and fuzzy). For theOβ

dataset, the APE-TIATI module can identify the threat types
of IoV traffic belonging to recent attacks such as backdoor,
DDoS, DoS, injection MITM and so on by achieving averages
of 97.09%-99.93%. For the Oγ network dataset, the APE-
TIATI module largely neglected to learn DoS Slowhttptes,
bot and web attack. The reason behind is that the dataset
has very less observations of these threats. Moreover, for rest
of the classes i.e., DoS GoldenEye, FTPPatator, DoS Hulk,
PortScan and DDoS attacks the proposed algorithm performed
well and achieved average of 81.88%-100.00%. In Fig. 5, we
have shown the confusion matrices obtained from APE-TIATI
module based on Oα, Oβ and Oγ datasets, respectively. Most
of the occurrences in all datasets are accurately classified. Fig.
6 illustrates AU-ROC curve for each threat type obtained by
APE-TIATI module using Oα, Oβ and Oγ datasets, respec-
tively. In this study, AU-ROC value is calculated and plotted
for each threat and we see that for all threats present in both
datasets the coloured reference line is on the top-left corner.
This refers to the best performance of the model with almost
100% values for all attacks.

D. Comparison with baseline approaches
In this set of experiments, Naive Bayes (NB), Decision

Tree (DT) and Random Forest (RF) techniques serves as the
baseline for evaluating both TIMIF module. We may draw a
number of conclusions based on the data in Table VI. First,
APE-TIBD and APE-TIATI module is able to achieve higher
AC (i.e., 99.98%, 99.97%, 99.98%, 99.20% and 98.65% and
99.02%) compared to NB, DT and RF using Oα, Oβ and Oγ

datasets, respectively. Moreover, we can observe similar trend
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TABLE IV: Per-class prediction results (%) for APE-TIATI module on Oβ dataset.
Parameters Backdoor DDoS DoS Injection MITM Normal Password Ransomware Scanning XSS

PR 99.93 98.54 97.96 97.16 97.91 99.99 98.79 98.81 99.93 99.53
DR 99.97 97.17 98.98 98.03 85.12 100.00 99.39 99.91 99.38 99.90
F1 99.64 97.15 98.66 97.22 92.54 99.15 99.59 99.44 99.16 99.61

FAR 0.00003 0.00130 0.00092 0.00130 0.00002 0.00012 0.00009 0.00052 0.00001 0.00002

Terms & Abbreviations: PR:Precision Rate; DR: Detection Rate; FAR: False Alarm Rate.

TABLE V: Per-class prediction results (%) for APE-TIATI module on Oγ dataset
Parameters BENIGN DoS Hulk DDoS PortScan DoS GoldenEye FTPPatator DoS slowloris DoS Slowhttptes SSHPatator Bot Web Attack

PR 98.23 99.44 99.93 83.98 87.16 99.81 98.81 96.76 100.00 99.48 74.15
DR 99.53 91.13 95.95 82.83 81.88 99.38 96.95 43.30 94.75 36.58 09.98
F1 98.88 95.09 97.90 83.40 84.44 99.59 97.87 59.57 97.30 53.49 17.60

FAR 0.09357 0.00038 0.00003 0.00383 0.00052 0.00004 0.00002 0.00003 0.00000 0.00001 0.00003

Terms & Abbreviations: PR:Precision Rate; DR: Detection Rate; FAR: False Alarm Rate.

TABLE VI: Performance comparison with baseline algorithms

Techniques AC DR PR F1
Dataset Oα

NB [14] 94.69 88.10 86.68 81.37
DT [17] 92.20 85.90 88.63 80.12
RF [18] 95.21 90.11 89.21 88.12

APE-TIBD 99.98 99.88 99.98 99.93
APE-TIATI 99.97 99.98 99.88 99.96

Dataset Oβ

NB [14] 90.69 77.70 77.68 72.43
DT [17] 95.34 80.00 74.42 76.33
RF [18] 97.81 85.43 87.55 86.41

APE-TIBD 99.98 99.95 100.00 99.97
APE-TIATI 99.20 97.77 99.75 98.30

Dataset Oγ

NB [14] 59.57 80.65 45.75 47.00
DT [17] 98.34 62.16 77.40 64.58
RF [18] 98.62 51.77 62.01 55.62

APE-TIBD 98.65 92.21 90.46 91.33
APE-TIATI 99.02 84.73 94.34 82.63

Terms & Abbreviations: AC: Accuracy; DR: Detection Rate; PR:Precision
Rate; FAR: False Alarm Rate; NB: Naive Bayes; DT: Decision Tree; RF:
Random Forest; APE-TIBD: Automated Pattern Extractor-Threat Intelligence-
Based Detection; APE-TIATI: Automated Pattern Extractor-Threat Intelli-
gence Attack Type Identification.

TABLE VII: Comparison of accuracy with various other threat
intelligence techniques

Authors Year Method Dataset Accuracy
Lo et al. [22] 2022 HyDL-IDS Oα 97.11

Khan et al. [23] 2022 Multi-Stage IDS Oα 98.10
Haddaji et al. [6] 2024 FL-TL Oα 94.17
Alsaedi et al. [14] 2020 CART Oβ 88.00

Zhang et al. [5] 2024 HPPELM Oγ 94.67

Proposed TIMIF 2024

APE-TIBD
Oα 99.98
Oβ 99.98
Oγ 98.65

APE-TIATI
Oα 99.97
Oβ 99.20
Oγ 99.02

in values for DR, PR and F1 score with both datasets. These
results confirm that proposed APE-TIBD and APE-TIATI
module has performed well compared to existing baseline
approaches in detecting threats.

E. Comparison with recent Techniques

Finally, we compare the TIMIF framework to extant state
threat intelligence techniques to see how well it performs. The
comparison of performance under the accuracy parameter is
shown in Table VII. Most recent studies [15], [12], [11], [17],
[16] have either failed to leverage openly accessible datasets or
have used outdated datasets such as power system and UNSW-

NB15 datasets, which do not involve new attacks and so have
limited operational use for an ITS. Three different open source
datasets, Oα, Oβ and Oγ are used to assess the proposed
TIMIF architecture. Moreover, we see that the APE-TIBD
and APE-TIATI module of TIMIF framework has achieved
higher accuracy compared to other approaches [22], [23], [6],
[14] and [5]. The proposed TIMIF framework introduces a
novel approach to threat intelligence in the VRCS. However,
a notable challenge arises from the framework’s inherent com-
plexity, particularly its ”black box” nature. This aspect signifi-
cantly complicates efforts to understand and interpret how the
TIMIF framework operates internally. As a result, analyzing
the decision-making process that underlies the detection of
cyber threats becomes a daunting task. Stakeholders and users
may find it challenging to trace how specific detections were
made or to validate the reasoning behind the identification of
certain cyber threats. This limitation not only affects trust in
the system’s outputs but also hinders the ability for in-depth
analysis and refinement of the threat detection mechanisms
within the VRCS context.

VI. CONCLUSION AND FUTURE WORK

In this article, we proposed TIMIF, a new threat intelli-
gence modeling and identification framework for detecting and
identifying threat types by analysing the network data from
edge servers. TIMIF takes both RSUs and OBUs resource
constraints and threat hunting performance requirements into
consideration, and incorporates three DL-based key design
modules, namely APE, TIBD and TIATI, to improve the
security performance of VRCS network. The proposed TIMIF
framework was evaluated using three datasets. Specifically,
TIMIF achieved accuracy and detection rate close to 99%
using HCRL-car hacking, ToN-IoT and CICIDS-2017 datasets.
Experimental results showed that the TIMIF framework can
significantly detect and identify recent attack patterns in VRCS
network compared to some baseline and recent TI techniques.
For the future work, we plan to develop a working prototype
of TIMIF framework in actual VRCS environment to check its
effectiveness. Another possibility is to extend TIMIF frame-
work to address other relevant large data problems like image
segmentation and object identification.
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