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Abstract

In high-energy particle physics, the study of particle-particle correlations in proton-
proton and heavy-ion collisions constitutes a pivotal frontier in the effort to understand
the fundamental dynamics of the strong force. To the best of our knowledge, we employ
for the first time the BFKL dynamics implemented in a Monte Carlo code in momentum
space to compute final state correlations in proton-proton collisions. Our present work
aims to investigate whether the particular dynamics of the high-energy limit of QCD
can contribute to the long-range rapidity correlations and the enigmatic ridge effect in
proton-proton collisions.

1 Introduction

Particle-particle correlations constitute a central aspect of high-energy particle physics, as
they enable the exploration of the intricate dynamics of strong force interactions in various
collision systems. It is a tool with a long history going back to 1960 when Goldhaber,
Goldhaber, Lee and Pais extracted from two-pion correlations the spatial extent of the
annihilation fireball in proton-antiproton reactions [1] (for a review, see Ref. [2]).

Particle-particle correlations, in particular correlations in the pseudorapidity-azimuthal
anlge plane, became anew an extremely important tool for high-energy particle physics
in the last 20 years, initially in the analysis of the data from the Relativistic Heavy-Ion
Collider (RHIC) at Brookhaven National Laboratory. There, while studying correlations
of the final state particles in Au-Au collisions, it was observed the so-called ridge effect,
where the produced particles appear as two ”ridges” opposite in azimuthal angle ϕ, with
approximately flat rapidity distributions [3, 4]. The ridge in ion-ion collisions was seen as
a collective phenomenon, namely as a signature of the formation of quark-gluon plasma
(QGP) - a hot and dense state of matter [5–7]. The formation of the ridge was explained
by the hydrodynamic expansion of the QGP, which creates a pressure gradient that drives
the particles to flow along the direction of the collision axis. In other words, the long-range
correlations in rapidity for azimuthal angle differences near zero are usually attributed to a
collective hydrodynamical flow due to an initial anisotropy in the collision of the two ions
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that survives in the distributions of the final-state particles through the collective expansion
of the medium [8].

Later, the ridge was also observed at the Large Hadron Collider (LHC) in smaller collision
systems, such as proton-proton collisions. The first observation of the ridge effect in proton-
proton collisions was reported by the CMS collaboration in 2010, using data from the LHC
at a center-of-mass energy of 7 TeV [9]. Long-range correlations have been observed in
high-multiplicity proton–proton (pp) [10,11], proton–nucleus (pA) [12–15], and light nucleus-
nucleus collisions [16,17]. These findings have raised the question on whether an explanation
based on collective phenomena is adequate in hadronic collisions. The formation of a medium
and its subsequent evolution, assumed to explain the ridge in heavy-ion collisions, might not
apply in small collision systems, since the requirement of thermal equilibrium may not be
fulfilled due to the small system size.

Despite the huge theoretical and experimental effort, the ridge effect in proton-proton
collisions is still not fully understood [18–20] despite some recent progress [21–23]. At
present, most of the possible explanations in the literature (for a very nice summary, see
Ref. [24]) involve either the Color Glass Condensate (CGC) framework [25–27] and gluonic
flux tubes [28,29] or hydrodynamic flow [30,31], while numerous works offer various descrip-
tions of possible mechanisms responsible for the ridge effect, see for example Refs. [32–46]
and references therein.

Recently, a number of experimental studies have given valuable new information but
have not resolved the mystery of the ridge effect in small systems. Collective behaviour
of final-state hadrons was studied in high-multiplicity events at photoproduction and deep
inelastic ep scattering at a centre-of-mass energy of 318 GeV with the ZEUS detector at
HERA [47]. In that study, neither the measurements in photoproduction processes nor those
in neutral current deep inelastic scattering showed significant collective behaviour similar
to what was observed in high-multiplicity hadronic collisions. Furthermore, measurements
of two-particle angular correlations of charged particles emitted in hadronic Z decays were
presented in Ref. [48]. The analysis was done with archived e+ e− annihilation data at a
center-of-mass energy of 91 GeV which were collected with the ALEPH detector at LEP.
There, no significant enhancement of long-range correlations was observed. A subsequent
analysis on data with a center-of-mass energy of up to 209 GeV identified a long-range
near-side excess in the correlation function when calculating particle kinematic variables
with respect to the thrust axis [49]. Very recently, ALICE released a study [50] (see also
Ref. [51]) of the ridge yield measured in a hadronic system of similar multiplicity to the
multiplicity of events that come from e+ e− annihilation. The ridge yield was substantially
larger than what was observed by the ALEPH analysis for center-of-mass energy of 91 GeV.
Furthermore, CMS has reported the observation of enhanced long-range elliptic anisotropies
inside high-multiplicity jets in pp collisions [52]. All these are quite indicative that the
mechanisms for ridge yield production in very small hadronic systems are not understood
and that more theoretical investigation is needed.

With the present work, we want to study whether the QCD dynamics that governs
the hardest subprocesses in proton-proton collisions could be responsible for correlations at
small azimuthal angles (near side) and large rapidity separations. Typically, in a fixed order
calculation, the partonic cross-section is a very low multiplicity event before hadronization,
two outgoing partons at leading order (LO), three outgoing partons at next-to-leading order
(NLO) and four outgoing partons at next-to-next-to-leading order (NNLO). If the near side
correlations were dictated by the hard scattering part, leaving aside the fact that probably
one could easily theoretically compute them, we would be able to see them at any multiplicity
events which is not the case. On the other hand, going beyond a fixed order calculation for
the partonic cross-section, in particular in the high energy limit of QCD (more accurately,
the multi-Regge limit), we know that we have the emergence of interesting effects regarding
the dominant dynamics, such as the decoupling of the rapidity from the transverse degrees of
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freedom, the reggeization of the t-channel exchanged gluons and rapid increase of the amount
of small-x gluons with similar transverse momenta in the colliding protons. Actually, this
rapid increase of the number of gluons in the protons eventually leads to unitarity violation
at very high energies and the main mechanism to restore the latter is the introduction of
parton saturation [53], a key concept within the framework of CGC.

In this paper, we use Monte Carlo simultations to compute the rapidity-azimuthal angle
correlations for proton-proton collisions, in particular we use Pythia8 [54] as a base reference
and BFKLex [55–63] which is a Monte Carlo code that generates the hard scattering part of the
collision using the Balitsky-Fadin-Kuraev-Lipatov (BFKL) resummation framework [64–69].
In particular, it employs the iterative solution of the BFKL equation cast in a suitable
form for Monte Carlo studies directly in momentum space [70]. Both computations are
performed within the collinear factorization scheme [71,72] where the partonic cross section
is convoluted with the parton distribution functions (PDF) of the proton. What we aim
at with this study is to find out whether any near side correlations arise once we switch
from a [LO matrix elements] + [parton shower] approach to a BFKL-based calculation at
leading logarithmic accuracy. The importance of computing the correlation distribution
from both approaches directly in momentum space from final-state jets and minijets cannot
be overstated, as it allows us to avoid any modelling considerations.

In the next section, we give a short introduction on BFKL and BFKLex. In Section 3,
we lay the groundwork for our study, we present our results and discuss our findings. In
Conclusion, we offer our final remarks and provide insights for future research directions.

2 BFKL and BFKLex

An important line of research within particle phenomenology at colliders is to search for
effects that are associated with the high energy limit of QCD and to pin down observ-
ables that can reveal the effects of the BFKL domain [64–69]. This has proven to be a
rather challenging task since the typical phenomenological calculations based on matrix el-
ements computed at fixed order along with the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution [73–77] to account for the PDFs tend to describe the bulk of the data
adequately.

The key idea in this formalism is that, when the center-of-mass energy
√
s → ∞, Feyn-

man diagrams that contribute terms of the form αn
s logn (s) ∼ αn

s (yA − yB)
n

give the dom-
inant numerical contributions to the computation of cross-sections. yA and yB are the
rapidities of some properly chosen tagged particles or jets in the final state, such that their
rapidity difference Y = yA − yB is the largest among the particles or jets in the final state.
The terms αn

s logn (s) can be of order unity and therefore, these diagrams must be resummed
in order to accurately describe experimental observables. In this limit, a decoupling between
transverse and longitudinal degrees of freedom takes place which allows to evaluate cross
sections in the factorized form:

σLL =

∞∑
n=0

CLL
n αn

s

∫ yA

yB

dy1

∫ y1

yB

dy2· · ·
∫ yn−1

yB

dyn

=

∞∑
n=0

CLL
n

n!
αn
s (yA − yB)

n︸ ︷︷ ︸
LL

where LL stands for the leading log approximation and yi correspond to the rapidity of
emitted particles. The LL BFKL formalism allows one to calculate the coefficients CLL

n [64–
69]. The next-to-leading log approximation (NLL) [78, 79] is much more complicated since
it is sensitive to the running of the strong coupling and to the choice of energy scale in the
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logarithms. One can parametrize the freedom in the choice of these two scales, respectively,
by introducing the constants A and B in the previous expression:

σLL+NLL =

∞∑
n=1

CLL
n

n!

(
αs −Aα2

s

)n
(yA − yB − B)

n

= σLL −
∞∑

n=1

(
B CLL

n + (n− 1)ACLL
n−1

)
(n− 1)!

αn
s (yA − yB)

n−1︸ ︷︷ ︸
NLL

+ . . .

We see that at NLL a power in log s is lost w.r.t. the power of the coupling. Within the
formalism, we can then calculate cross sections using the following factorization formula
(with Y ≃ ln s)

σ(Q1, Q2, Y ) =

∫
d2k⃗Ad

2k⃗B ϕA(Q1, k⃗A)ϕB(Q2, k⃗B)︸ ︷︷ ︸
PROCESS−DEPENDENT

f(k⃗A, k⃗B , Y )︸ ︷︷ ︸
UNIVERSAL

,

where ϕA,B are process-dependent impact factors which are functions of some external scale,

Q1,2, and some internal momentum for reggeized gluons, k⃗A,B . The gluon Green’s function

f is universal, it depends on k⃗A,B and on the colliding energy of the process ∼ eY/2. It
corresponds to the solution of the BFKL equation. In momentum space, the BFKL equation
at LL reads

ω fω

(
k⃗A, k⃗B

)
= δ2

(
k⃗A − k⃗B

)
+

∫
d2k⃗ K

(
k⃗A, k⃗

)
fω

(
k⃗, k⃗B

)
, (1)

where K
(
k⃗a, k⃗

)
is the BFKL kernel

K
(
k⃗a, k⃗

)
= 2ω

(
−q⃗2

)
δ2
(
k⃗a − k⃗

)
︸ ︷︷ ︸

Kvirt

+
Ncαs

π2

1(
k⃗a − k⃗b

)2
︸ ︷︷ ︸

Kreal

. (2)

The solution of the BFKL equation at LL in transverse momentum representation can be
written in an iterative form [70] as

f = eω(k⃗A)Y

{
δ(2)

(
k⃗A − k⃗B

)
+

∞∑
n=1

n∏
i=1

αsNc

π

∫
d2k⃗i

θ
(
k2i − λ2

)
πk2i∫ yi−1

0

dyie
(ω(k⃗A+

∑i
l=1 k⃗l)−ω(k⃗A+

∑i−1
l=1 k⃗l))yiδ(2)

(
k⃗A +

n∑
l=1

k⃗l − k⃗B

)}
,

where the gluon Regge trajectory reads

ω (q⃗) = −αsNc

π
log

q2

λ2

and λ is a regulator of infrared divergencies. This solution has been studied at length in a
series of papers and it served as the basis in order to construct the Monte Carlo event code
BFKLex which has had multiple applications in collider phenomenology and more formal
studies [55–63]. In this paper, we will run BFKLex to LL acuracy.
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3 Results and Discussion

Two-particle correlations are analyzed in a two-dimensional azimuthal ∆η-∆ϕ phase space,
where ∆η and ∆ϕ denote the difference of the pseudorapidity η and the azimuthal angle ϕ
of the two selected particles, respectively. The two-particle correlation function is defined
as

C(∆η,∆ϕ) =
S(∆η,∆ϕ)

B(∆η,∆ϕ)
, (3)

where S and B denote particle pair distributions from the same event and from different
events respectively, representing the signal and background contributions, see for example
Ref. [80]. As we mentioned in the introduction, one doesn’t expect to notice any significant
type of near-side correlations just by studying the outgoing partons in a fixed order com-
putation setup. More specifically, since at LO, we have only two outgoing partons flying
back to back, we expect these to contribute to the far side ridge since their azimuthal an-
gle difference will be around π. For Pythia8, we need to switch on the initial (ISR) and
final state radiation (FSR) allowing parton shower. We also switch on multiple partonic
interactions (MPI). This will largely increase the number of the quarks and gluons that will
eventually hadronise and give the final state hadrons that are typically detected by the LHC
experiments. BFKLex does not have parton shower implemented. However, we know from
the iterative solution described in Section 2 that for medium and large rapidity separations
∆η = ηa − ηb between the most forward (ηa) and most backward (ηb) partons in BFKL
evolution, we have a significant amount of emitted gluons (typically of the order of 15-20)
with rapidities ηi: ηb < ηi < ηa. Furthermore, we will not switch on any MPI scenario when
we run BFKLex.

In order to be able to qualitatively compare the correlations we compute from Pythia8

and BFKLex, we need to employ the following method: we switch on parton shower in
Pythia8 and we use the anti-kT clustering algorithm [81] as implemented in fastjet [82,
83] to cluster the final state partons (just before hadronization) into minijets. The term
minijet was initially used to describe emissions of gluons in the BFKL framework. More
precisely, minijets was the term used in the study of dijet production –when the final state
is characterized by two jets widely separated in rapidity– to describe any emission activity
between the two bounding jets. In particular, we define a minijet as a jet entity with a
rapidity value anywhere between the most forward and backward jet rapidities and transverse
momentum that can either be large enough e.g. pminijet

T > 20 GeV, to enable experimental
detection (thus qualifying as a jet) or much smaller, approaching a few GeV, in which case
it appropriately earns its designation as a minijet.

There are two scales we need to set up for the runs. The first one is p̂T,min, which is the

lowest allowed pT for the outgoing partons in the partonic scattering, and the second is pjetT,min

, which defines the minimum allowed pT for a minijet. The former is a parameter passed to
the generation of events in Pythia whereas the latter is passed to fastjet for the clustering.
For the hard scattering part of the collision in BFKLex, we impose a similar to p̂T,min low
cutoff, which controls the lowest allowed pT of the most forward and most backward jet or
minijet. We decided to use the default PDF set of Pythia for all runs in the paper, namely,
NNPDF2.3 QCD+QED LO [84]. Despite the fact that is not possible to conduct a realistic
experimental analysis on minijets, their study remains of great importance at the theoretical
level, offering invaluable insights into fundamental processes.

For the runs with BFKLex, we allow the emission of up to 20 gluons in order to compute
the gluon Green’s function that governs the partonic cross section in the BFKL setup. One
could allow for events with an even larger number of final state gluons but such events
contribute very little to the total cross section and they do not change the correlation in any
visible way. Next, we use again the anti-kT algorithm to cluster these gluons into minijets.
That way, the rapidity-azimuthal angle correlations calculated for minijets above some lower
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pT cutoff are infrared safe observables and we can compare the respective distributions from
the two Monte Carlo codes.

At this point, it is important to ascertain that the qualitative attributes of the correlation
distributions remain intact during the transition from final state minijets to final state
partons in our analysis. While it is generally expected that the correlation distributions
exhibit similar characteristics when computed for both minijets and final state partons (after
parton shower), it is crucial to empirically verify this. To this end, we employ Pythia8

as a benchmark reference, we calculate the correlations for minijets and for partons and
we verify that indeed we observe similar distributions with a noteworthy difference in the
region near ∆ϕ ∼ 0 ,∆η ∼ 0, that can be explained easily due the clustering effects as we
will show in the following. We should also note here that final state partons will undergo
hadronization, introducing additional variables to the overall dynamics. Nonetheless, given
our current focus on investigating whether the near side ridge originates primarily from
dominant QCD dynamics prior to hadronization, concerns regarding hadronization effects
are deemed secondary.

In Fig. 1, we present the correlation distribution computed for the final state partons
(Left) and the minijets (Right). We observe that there are no long-range correlations in
rapidity near ∆ϕ ∼ 0. This can be seen more clearly in Fig. 2 where we integrate over
∆η excluding the range −2 < ∆η < 2 to avoid the peak near ∆ϕ ∼ 0 ,∆η ∼ 0 due to
correlations between partons that belong to the same minijet. To be precise, the peak is a
characteristic of the parton correlation distribution which turns into a dip once we compute
the minijet correlation distribution since there cannot be two minijets closer than R = 0.5
in rapidity and azimuthal angle since in that case they would be clustered by fastjet into
one minijet.
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Figure 1: Left: Parton correlation distribution obtained from p-p collisions with Pythia8,
with a minimum hard process transverse momentum cutoff of p̂T,min = 5 GeV. Right:
Minijet correlation distribution obtained from p-p collisions at Pythia8, with a minimum
hard process transverse momentum cutoff of p̂T,min = 5 GeV. The low pT cutoff in fastjet

was set to pjetT,min = 5 GeV and the jet radius to R = 0.5.

In Fig.3, we present the correlation distribution computed for the minijets with BFKLex.
We impose a lower pT cutoff to the most forward and most backward jets, pT,min = 5 GeV.

We use two different values for the low pT cutoff in fastjet, pjetT,min = 5 GeV (Fig. 3, Left)

and pjetT,min = 10 GeV (Fig. 3, Right). As in the case with Pythia8, we observe that there
are no long-range correlations in rapidity near ∆ϕ ∼ 0. In Fig. 4, we integrate over ∆η
excluding the range −2 < ∆η < 2 to avoid the dip near ∆ϕ ∼ 0 ,∆η ∼ 0. We also exclude
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Figure 2: Left: Parton azimuthal correlation distribution obtained after integrating the
distribution in Fig. 1 (Left) over |∆η| > 2. Right: Minijet azimuthal correlation distribution
obtained after integrating the distribution in Fig. 1 (Right) over |∆η| > 2.

the intervals −8 < ∆η < −7 and 7 < ∆η < 8 to avoid the statistical fluctuations in Fig. 3
that would only introduce unnecessary noise. We see that the distributions in Fig. 4 are
very similar to the ones shown in Fig. 2 (mainly Right).
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Figure 3: Left: Minijet angular correlation distribution obtained from p-p collisions with
BFKLex. The minimum transverse momentum cutoff of the outermost in rapidity jets was
set to pT,min = 5 GeV. The low pT cutoff in fastjet was set to pjetT,min = 5 GeV and the jet
radius to R = 0.5. Right: The same as to the left with the only difference that the low pT
cutoff in fastjet was set to pjetT,min = 10 GeV.

4 Conclusion

We presented the first BFKL based Monte Carlo study, directly in momentum space, of the
rapidity-azimuthal angle correlations between minijets in proton-proton collisions, together
with a similar study with Pythia, the latter serving as a base reference. We found no
indication that the specific dynamics of the high-energy limit of QCD are responsible for the
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Figure 4: Left: Minijet azimuthal correlation distribution obtained after integrating the
distribution in Fig. 3 (Left) over 2 < |∆η| < 7. Right: Minijet azimuthal correlation
distribution obtained after integrating the distribution in Fig. 3 (Right) over 2 < |∆η| < 7.

long-range rapidity correlations and the puzzling ridge effect in small systems. It remains
to be seen whether this conclusion will change with the inclusion of higher-order corrections
in a full NLL accuracy BFKL analysis or with the incorporation of non-linear effects such
as parton saturation.
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